INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Available online at www.ijrpc.com

Research Article

METHOD DEVELOPMENT AND VALIDATION FOR THE DETERMINATION OF RESIDUAL SOLVENTS IN METHOCARBAMOL PURE DRUG BY HS-GC

N. Jahnavi and VS. Saravanan*

The Erode College of Pharmacy, Perundarai main road, Vallipurathanpalayam (po),

Veppampalayam, Erode, Tamilnadu, India.

ABSTRACT

A simple HS-GC method for the determination of residual solvents in methocarbamol using nitrogen as the carrier gas at 3.5mL/min with DB-624 (30 meters X 0.53 mm ID) as column using FID as detector was developed. The developed method was validated and parameters were to be found within the limits of USP. The retention time for residual solvents individually and in spiked standard solution was determined. The %RSD for six injections should be NMT15%. The percentage recovery ranges from 85-115%. The correlation coefficient $R^2 \ge 0.999$. The limit of detection and limit of quantification was found to be specific. Precision, method precision and intermediate precision was found to be within the acceptance limit. Finally the sample was tested for the presence of residual solvents mainly benzene as it is a class1 solvent and should be avoided.

Keywords: Methocarbamol, DB-624, FID, %RSD.

INTRODUCTION

Residual solvents are the organic volatile chemicals that are used or produced in the manufacture of drug substances or excipients, or in the preparation of drug products. These solvents are not completely removed by practical manufacturing techniques². Since there is no therapeutic benefit from residual solvents, these solvents should be removed. As benzene is a class1 solvent it should not be present in our sample i.e. methocarbamol. Methocarbamol is a central muscle relaxant. Chemically it is 2-hydroxy-3-(2-methoxy phenoxy) propylcarbamate. Its mechanism of action may be due to central nervous system depression and has no direct action on the contractile mechanism of straited muscle, the motor end plate or the nerve fibre.

Literature survey has reported that several analytical methods were found for the quantitation, and simultaneous determination of methocarbamol by HPLC ⁸⁻¹², RP-LC ¹³, isocratic SFC method ⁵ and chemometric method ³, pharmacokinetic properties ¹⁴, GC ¹. The aim of the present study was to prove the absence of residual solvents mainly benzene in the pure drug of methocarbamol.

Fig. 1: Chemical structure of methocarbamol

EXPERIMENTAL

Head space Gas chromatography

The analysis was performed on Agilent gas chromatography model no 7890A and 6850 using DB-624 as the column and FID detector with nitrogen as the carrier gas ⁴.

Chi offatogi aprile conditions				
Column	mn DB-624			
Dimension	30 meters x 0.53 mm ID (3µm)			
Detector	FID			
Detector Temperature	250°C			
Injector Temperature	180°C			
Injector volume	1.0 mL vapor			
Conditions	50°C-hold for 8min-Raise @10°C/min to 230°C hold for 10min			
Runtime	40 minutes.			
Split Ratio	1:5			
Carrier Gas	3.5 mL/min. (Nitrogen)			
Makeup Gas	25 mL/min. (Nitrogen)			

Chromatographic conditions

Bath temperature	125°C
Loop temperature	135°C
Transfer line temperature	145°C
Vial equilibration time	30 min.
Pressurize time	0.5 min.
Loop fill time	0.2 min.
Loop equilibration time	0.2 min.
Injection time	1.0 min.
GC cycle time	45 min

Head space conditions

Sample and Standards

Reagents: Methanol, IPA, benzene, toluene, di methyl sulfoxide (DMSO) were obtained from Merck -Mumbai.

Standard stock preparation-1

Dissolve 40mg of benzene in 100mL volumetric flask, then diluted to the mark with DMSO. Further dilute 5mL to 100mL with DMSO.

Standard stock solution-2

Accurately transfer 150mg of methanol and 250mg of IPA and 44.5mg of toluene into a 100mL volumetric flask, containing about 20mL of DMSO. Dilute and bring the volume with DMSO, mix thoroughly.

Standard preparation

Dilute 1mL of the standard stock solution-1 and 20mL of standard stock solution-2 into a 100mL volumetric flask and bring to volume with DMSO. Mix thoroughly. Add 5mL of this solution to 20mL headspace vial then cap and seal the vial immediately.

Sample preparation: Weigh approximately 500mg of sample and transfer to a 20mL headspace vial add 5mL of DMSO, then cap

and seal the vial immediately. Vortex the sample until it is fully dissolved.

Procedure: Prepared solutions are taken into 2mL headspace vial, sealed with aluminium closure. These standards are run under the specified conditions and retention times are noted to calculate %RSD.

Method Validation

The parameters like specificity, linearity, precision, accuracy, robustness, system suitability were performed that are mentioned in the International conference on harmonisation (ICH) guidelines ⁶.

Specificity is performed to know the retention time for the residual solvents individually and in spiked sample solution.

Linearity was done to know the test results which are directly proportional to the concentration of analyte in the sample. It was performed from LOQ to 150% and results were found to be within the limits.

Precision was validated to know the closeness of agreement between a series of measurements obtained from multiple sampling of the same homogeneous sample. %RSD for precision was also found to be NMT 15%.

Accuracy is the amount of drug recovered from the spiked sample. It is assessed by 9 determinations over a minimum of 3 concentration levels covering the specified range.

Robustness is tested by introducing small variations in method parameters. From the results it was observed that the method remain unaffected.

System suitability is performed to ensure that the complete testing system is suitable for intended application.

Finally the sample is checked for the presence of residual solvents especially benzene.

RESULTS

All the validated parameters were found to be within the limits. Linearity is performed from 50-150% and graph obtained was linear showing correlation coefficient R²≥0.999%. Drug recovery should be 85-105%. System suitability for 6 injections %RSD was found to be NMT 15%.

CONCLUSION

From the results obtained we can conclude that all the results are within the acceptance criteria i.e. %RSD for atleast of 6 injections is NMT 15% as per the USP ^{12.}

Table 1: Specificity					
	Retention Time(min)				
Solvent Name	Individual Spiked				
Methanol	2.535	2.541			
Iso Propyl alcohol	3.923	3.922			
Benzene	10.432	10.453			
Toluene	14.003	14.003			

	Retention Time(min)		
Solvent Name	Individual	Spiked	
Methanol	2.535	2.541	
Iso Propyl alcohol	3.923	3.922	
Benzene	10.432	10.453	
Toluene	14.003	14.003	

Table 2: Linearity Table for Methan			
	Methanol		
S. No	Actual	Avg.	
	Conc.	Area	
LOQ	36.43	151987	
25%	759.05	2488194	
50%	1518.1	5035506	
75%	2277.15	7372583	
100%	3036.2	10142484	
125%	3795.25	12491416	
150%	4554.3	15342322	
Slope	3343.20		
Correlation coefficient	0.9995		

Linearity

458

Table 5. Linearity Table for IFA				
	IPA			
S. No	Actual	Avg.		
	Conc.	area		
LOQ	2.52	24170		
25%	1262.05	6963886		
50%	2524.1 14070312			
75%	3786.15 20854337			
100%	5048.2 28483357			
125%	6310.25 35122623			
150%	7572.3	42835902		
Slope	5637.33			
Correlation coefficient	0.9998			

Fig. 2: Linearity Graph for Methanol Table 3: Linearity Table for IPA

	Benzene		
S. No	Actual	Avg.	
	Conc.	area	
LOQ	0.67	25225	
25%			
50%	1.12	42712	
75%	1.67	59828	
100%	2.23	78042	
125%	2.79	95150	
150%	3.4	116589	
Slope	32877.2		
Correlation coefficient	0.9991		

Table 4: Linearity Table for Benzene

Fig. 4: Linearity Graph for Benzene

S. No.	Toluene		
3. NO	Actual Conc.	Avg. area	
LOQ	0.35	69839	
25%	232.2	4143926	
50%	464.4	8271667	
75%	696.6	12295770	
100%	928.8	16634578	
125%	1161.0	20570855	
150%	1393.2	25090959	
Slope	17888.8		
Correlation coefficient	0.9998		

Table 5: Linearity Graph for Toluene

Fig. 5: Linearity Graph for Toluene

Table 6: Accuracy

Concentrati	Average %Recovery			
on in %	Methanol	IPA	Benzene	Toluene
LOQ	94	98	97	102
50%	105	106	95	108
100%	101	103	102	106
150%	103	105	101	102

Table 7: LOD and LOQ

Solvent	Methanol	IPA	Benzene	Toluene
LOD	11.40ppm	0.82ppm	0.16ppm	0.09ppm
LOQ	34.55ppm	2.50ppm	0.49ppm	0.26ppm

Robustness

The flow rate was changed ± 0.35 mL/min from that of the original one i.e. 3.5mL/min. The obtained results show that it has not affected by change in flow rate.

Batch Analysis

Finally the prepared methocarbamol pure drug was tested for the presence of residual solvents mainly benzene. Prepare the test solution in duplicate consecutively for 10 batches, inject the prepared two test solutions in to the gas chromatograph and record the peak responses. Subtract the area counts at solvent retention time in blank injection from the area counts obtained due to test preparation. Calculate the content in ppm of residual solvents by using average area from Test solution against to the solvent peak areas obtained from six standard injections. Consecutive 10 batches shall be injected for the estimation of solvent profile. Inject another five batches spiked with LOD level and five more batches shall be spiked with LOQ level, inject these samples for better monitoring of residual solvents in Methocarbamol.

Calculate the residual solvent content by using the

Following formulae:

Calculation

Area of solvent in test solution X conc. in mg/mL of Solvent in standard solution X 10⁶

Fig 8: Accuracy

Fig 9: Spiked sample

463

Fig 13: Standard-3

Fig 14: Standard-4

Fig 15: Standard-5

Fig 18: Methocarbamol Sample-1

Fig 19: Methocarbamol Sample-1

From these chromatograms obtained from the sample we can observe that no peak was found at the retention time of the benzene. By this it was concluded that our sample is pure and free from residual solvents.

REFERENCES

- 1. Camarasu CC. Szjits MM and Varga GB. Residual solvents in pharmaceutical products by gas chromatography headspace. J. Pharm. Biomed. Anal. 1998; 18, 623-639
- European medicines agency 2009. ICH topic Q3C (R4) impurities, Guidelines for residual solvents.
- Ehab F Elkady.. Simultaneous spectrophotometric determination of diclofenac potassium and methocarbamol in binary mixture using chemometric techniques and artificial neural networks. Drug Test Analysis. 2011; 3 (4): 228-233.
- 4. GC Column Selection Guide, sigmaaldrich.com/gc, 2-6.
- Indravadan C. Bhoir, Bhanu Raman, M. Sundaresan. Development of an Isocratic SFC Method for Four Centrally Active Muscle Relaxant Drugs. Analytical Letters.1998; 31(9): 1533-1542.
- International Conference on Harmonization, Impurities in new drug substances, 2002.Available from: http://www.ich.org.
- Kolb, B. Ettre, L.S. Static Headspace-Gas Chromatography. Theory and practice. New York, 2nd edition, 1997; 3-4.
- 8. M R Koupai-Abyazani, B Esaw, B Laviolett. Determination of methocarbamol in equine serum and urine by high-performance liquid

chromatography with ultraviolet detection and atmospheric pressure ionization-mass spectrometric confirmation. J. Chromatogr. B. Biomed. Appl. 1994; 654 (2): 287-292.

- R. S. Manmode, A. K. Dhamankar, J. V. Manwar . Stability indicating HPLC method for simultaneous determination of methocarbamol and nimesulide from tablet matrix. Der Chemica Sinica, 2011; 2 (4): 81-85.
- Rosasco, Maria A. Ceresole, Rita, Forastieri, clara C.Segall, Adriana I. A stability-indicating high-performance liquid chromatographic method for the determination of methocarbamol in veterinary preparations. Journal of AOAC International. 2009; 92 (5): 1602-1605.
- 11. S Alessi-Severini, R T Coutts, F Jamali, F M Pasutto. High performance liquid chromatographic analysis of methocarbamol enantiomers in biological fluids. Bio Info bank library. 1992; 45 (11): 2256-2260.
- 12. United States Pharmacopoeia (USP), (2006), 1577-1578.
- Weng N, Lee JW, Hulse JD. Development and validation of a highperformance liquid chromatographic method for the determination of methocarbamol in human plasma. J Chromatogr B Biomed Appl. 1994; 654(2): 287-92.
- 14. W W Muir, R A Sams, S Ashcraft. pharmacologic and pharmacokinetic properties of methocarbamol in the horse. Journal of Analytical Toxicology. 1994; 21 (4): 301-305.