ISSN: 2231–2781

INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Available online at www.ijrpc.com

Research Article

SYNTHESIS, SPECTROSCOPIC AND BIOLOGICAL ASPECTS OF 3-(PYRIDIN-4-YL)-[1,2,4] TRIAZOLO [3,4-B][1,3,4]THIADIAZOLE DERIVATIVES

Gaurav K Patel and Hasmukh S Patel*

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar–388120, Gujarat, India.

ABSTRACT

A novel series of heterocyclic compounds N-(benzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide derivatives **5a-j** have been synthesized by the reaction of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol **3** and 2-(benzo[d]thiazol-2-ylcarbamoyl)benzoic acid derivatives **4a-j**. Synthesized heterocyclic compounds were characterized by elemental analysis, ¹H NMR, ¹³C NMR, FT–IR and LC-MS spectral studies. Antibacterial activities of all the compounds were studied against gram positive and gram negative bacteria and antifungal activities of all the compounds were studied against various fungi.

Keywords: heterocyclic compound, isonicotinohydrazide, amino-1,2,4-triazoles.

1. INTRODUCTION

Heterocyclic compounds bearing 1,2,4-triazole triazolothiadiazole nucleus and their derivatives have shown a wide range of pharmacological properties such antimicrobial¹, anti-inflammatory² anticonvulsant³, anticancer⁴, antitubercular⁵ and antitumor activities⁶. Looking to the pharmacological importance, our main concern was to prepare such heterocyclic compounds which possess comparable biological activity by introducing amino-1,2,4triazoles and triazolothiadiazoles segments together. Literature survey reveals that, not a single report was found in which triazolothiadiazoles containing benzothiazole-amide segment. Hence the initial work pertinent to this in this direction has been carried out by us⁷. In continuation of this the present work comprises the novel N-(benzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide containing benzthiazoloamide segment as shown in Scheme-1.

Scheme 1: Synthesis of compounds 5a-j

2. EXPERIMENTAL

2.1. Materials and measurements

All common reagents and solvents including isoniazid used were as analytical grade. Compound 1 and 2 are reported. The 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol (3) was prepared by method reported⁸. 2-amino benzothiazol and their derivatization with phthalic anhydride was carried out by reported method^{9,10} (listed in Table-1).

Alumina supported pre-coated silica gel 60 F254 thin layer chromatography (TLC) plates were purchased from the E. Merck (India) Limited, Mumbai and were used to check purity of compounds and, to study the progress of the reaction whereby TLC plates were illuminated under Ultraviolet light (254 nm), evaluated in I2 vapors and visualized by spraying with Draggendorff's reagent. Column chromatography was performed on silica gel (60-120 mesh). LC-MS of all novel samples taken on LCMS 8030 with Nexera UHPLC instrument. Infrared spectra (FT-IR) were obtained from KBr pellets in the range of 4000-400 cm⁻¹ with a Perkin Elmer spectrum GX spectrophotometer (FT-IR) instrument. ¹H NMR and ¹³C NMR spectra were acquired at 400 MHz on a Bruker NMR spectrometer using DMSO- d_6 (residual peak at $\delta \sim 2.5$ or \sim 39.5 ppm, 300 °K) as a solvent as well as TMS an internal reference standard. analytical (C, N, H) data was obtained by

using a Perkin–Elmer 2400 CHN elemental analyzer. The melting points were checked by the standard open capillary method and were uncorrected.

2.2. Synthesis of 5a-j

Compounds 5a-j were synthesized by the general method given below.

An equimolar mixture (0.10 mol) of 4-amino-5substituted-3-merapto-(4H)-1,2,4-triazoles (2) and 2-(benzo[d]thiazol-2-ylcarbamoyl)benzoic acid (Table-1) in phosphorus oxychloride (10 mL) was refluxed for 7 h. The reaction mixture was cooled to room temperature and then gradually poured onto crushed ice with stirring. The mixture was allowed to stand for five hours. The solid precipitates separated out was filtered, treated with dilute sodium hydroxide solution and washed thoroughly with cold water. The compound obtained was purified by column chromatography, air-dried and recrystallized from ethanol. Products were designated as 5a-j and characterized by elemental, IR, NMR, CMR and LC-MS analyses.

N-(benzo[d]thiazol-2-yl)-2-(6-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-2(3H)yl)benzamide (5a)

Compound 5a (M. Wt. 455.5g) was obtained in 68% yield as a dark brown color solid; mp > 250 °C (dec); 1 H NMR: δ 9.19 (s, 1H, -NH-),

7.92, 8.61 (m, 4H, pyridine), 7.63-7.92 (m, 4H, Ar-H), 7.59-8.06 (m, 4H, Ar-H); ¹³C NMR: δ 174.3 (-N=C-S-), 173.8 (-N=C-S-), 167.1 (-N=C-S-), 164.3 (-C=O), 151.7 (-N=C-N-), 149.2 (-N=C-C-,Py), 120.6, 133.4, 149.2 (Pyridine) 126.2, 127.8, 128.2, 130.9, 131.8, 134.7 (Ar-H), 117.4, 120.6, 123.9, 124.7. 129.8, 152.5 (Ar-H); FT-IR: u 3076 (-C-H=Aromatic stretching), 1688 stretching), 1534 (-C=C- stretching), 1237 (-N-N=C- stretching), 692 (-C-S-C- = triazolothiadiazole) cm $^{-1}$; LC-MS m/z 455.1[M–H]+, (M=455.5); Anal. Calcd for $C_{22}H_{13}N_7OS_2$: C 58.01, H 2.88, N 21.52, S 14.08% Found: C 57.96, H 2.82, N 21.49, S 14.02%.

N-(6-methylbenzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide (5b)

Compound 5b (M. Wt. 469.5 g) was obtained in 64% yield as a dark brown color solid; mp > 250 °C (dec); ¹H NMR: δ 9.23 (s, 1H, -NH-), 7.86, 8.65 (m, 4H, pyridine), 7.67-7.94 (m, 4H, Ar-H), 7.29, 7.75, 7.81 (m, 3H, Ar-H), 2.31 (s, 3H, $-CH_3$); 13C NMR: δ 174.7 (-N=C-S-), 173.4 (-N=C-S-), 167.7 (-N=C-S-), 164.1 (-C=O), 151.5 (-N=C-N-), 149.6 (-N=C-C-,Py), 120.9, 133.8, 149.6 (Pyridine), 126.4, 127.5, 128.6, 130.7, 131.3, 134.3 (Ar-H), 117.6, 120.9, 125.5, 129.6, 133.7, 149.7 (Ar-H), 20.6 (-CH3); FT-IR: u 3073 (-C-H=Aromatic stretching), 1683 (-C=O stretching), 1531 (-C=C- stretching), 1238 (-N-N=C- stretching), 695 (-C-S-C- = triazolo-thiadiazole) cm⁻¹; LC-MS m/z 469.1[M-H]+, (M=469.5); Anal. Calcd for C₂₃H₁₅N₇OS₂: C 58.83, H 3.22, N 20.88, S 13.66%. Found: C 58.81, H 3.20, N 20.82, S 13.64%.

N-(6-methoxybenzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide (5c)

Compound 5c (M. Wt. 485.5g) was obtained in 63% yield as a dark brown color solid; mp > 250 °C (dec); ¹H NMR: δ 9.21 (s, 1H, -NH-), 7.82, 8.67 (m, 4H, pyridine), 7.61-7.98 (m, 4H, Ar-H), 6.94, 7.49, 7.52 (m, 3H, Ar-H), 3.79 (s, 3H, -OCH₃); 13C NMR: δ 174.7 (-N=C-S-), 173.5 (-N=C-S-), 167.5 (-N=C-S-), 164.5 (-C=O), 151.3 (-N=C-N-), 149.3 (-N=C-C-,Pv), 120.4, 133.7, 149.3 (Pyridine), 126.5, 127.2, 128.9, 130.4, 131.8, 134.8 (Ar-H), 104.3, 114.3, 117.8, 131.2, 144.9, 155.8 (Ar-H), 54.8 (-OCH3); FT-IR: u 3072 (-C-H=Aromatic stretching), 1687 (-C=O stretching), 1531 (-C=C- stretching), 1239 (-N-N=C- stretching), 696 (-C-S-C- = triazolo-thiadiazole) cm⁻¹; LC-MS m/z 485.1[M-H]+, (M=485.5); Anal. Calcd for C₂₃H₁₅N₇O₂S₂: C 56.89, H 3.11, N 20.19, S 13.21%. Found: C 56.83, H 3.09, N 20.15, S 13.18%.

N-(6-chlorobenzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide (5d)

ISSN: 2231-2781

Compound 5d (M. Wt. 490.0g) was obtained in 66% yield as a light brown color solid; mp > 250 °C (dec); ¹H NMR: δ 9.18 (s, 1H, -NH-), 7.88, 8.63 (m, 4H, pyridine), 7.64-7.97 (m, 4H, Ar-H), 7.48, 7.63, 8.09 (m, 3H, Ar-H); 13C NMR: δ 174.9 (-N=C-S-), 173.7 (-N=C-S-), 167.4 (-N=C-S-), 164.8 (-C=O), 151.4 (-N=C-N-), 149.7 (-N=C-C-,Py), 120.3, 133.5, 149.7 (Pyridine), 126.8, 127.9, 128.4, 130.5, 131.7, 134.9 (Ar-H), 117.9, 120.8, 125.3, 129.2, 131.9, 150.7 (Ar-H); FT-IR: u 3071 (-C-H=Aromatic stretching), 1682 stretching), 1536 (-C=C- stretching), 1233 (-N-N=C- stretching), 697 (-C-S-C- = triazolothiadiazole) cm $^{-1}$; LC-MS m/z 489.0[M–H]+, (M=490.0); Anal. Calcd for $C_{22}H_{12}CIN_7OS_2$: C 53.93, H 2.47, N 20.01, S 13.09%. Found: C 53.91, H 2.43, N 20.03, S 13.04%.

N-(6-bromobenzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide (5e)

Compound 5e (M. Wt. 534.4g) was obtained in 69% yield as a light brown color solid; mp > 250 °C (dec); ¹H NMR: δ 9.24 (s, 1H, -NH-), 7.83, 8.67 (m, 4H, pyridine), 7.67-7.92 (m, 4H, Ar-H), 7.58, 7.67, 8.68 (m, 3H, Ar-H); 13C NMR: δ 174.2 (-N=C-S-), 173.4 (-N=C-S-), 167.4 (-N=C-S-), 164.9 (-C=O), 151.8 (-N=C-N-), 149.4 (-N=C-C-,Py), 120.9, 133.6, 149.4 (Pyridine), 126.6, 127.5, 128.4, 130.6, 131.9, 134.6 (Ar-H), 116.9, 118.6, 123.5, 128.2, 132.3, 151.9 (Ar-H); FT-IR: U 3074 (-C-H=Aromatic stretching), 1681 (-C=O stretching), 1537 (-C=C- stretching), 1229 (-N-N=C- stretching), 693 (-C-S-C- = triazolothiadiazole) cm⁻¹; LC-MS m/z 533.0[M–H]+, (M=534.4); Anal. Calcd for C₂₂H₁₂BrN₇OS₂: C 49.44, H 2.26, N 18.35, S 12.00%. Found: C 49.41, H 2.22, N 18.32, S 11.98%.

N-(6-nitrobenzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide (5f)

Compound 5f (M. Wt. 500.5g) was obtained in 62% yield as a light brown color solid; mp > 250 °C (dec); ¹H NMR: δ 9.21 (s, 1H, -NH-), 7.85, 8.61 (m, 4H, pyridine), 7.61-7.97 (m, 4H, Ar-H), 7.89, 8.13, 8.54 (m, 3H, Ar-H); 13C NMR: δ 174.7 (-N=C-S-), 173.4 (-N=C-S-), 167.3 (-N=C-S-), 164.6 (-C=O), 151.3 (-N=C-N-), 149.6 (-N=C-C-,Py), 120.3, 133.7, 149.6 (Pyridine), 126.5, 127.9, 128.6, 130.4, 131.9, 134.9 (Ar-H), 116.9, 118.6, 120.8, 130.8, 143.6, 158.7 (Ar-H); FT-IR: u 3078 (-C-H=Aromatic stretching), 1689 (-C=O stretching), 1538 (-C=C- stretching), 1234 (-N-

ISSN: 2231-2781

N=C- stretching), 686 (-C-S-C- = triazolothiadiazole) cm $^{-1}$; LC-MS m/z 500.0[M-H]+, (M=500.5); Anal. Calcd for $C_{22}H_{12}N_8O_3S_2$: C 52.79, H 2.42, N 22.39, S 12.81%. Found: C 52.73, H 2.41, N 22.34, S 12.80%.

N-(6-hydroxybenzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide (5g)

Compound 5g (M. Wt. 471.5g) was obtained in 65% yield as a dark brown color solid; mp > 250 °C (dec); ¹H NMR: δ 9.13 (s, 1H, -NH-), 7.83, 8.63 (m, 4H, pyridine), 7.65-7.99 (m, 4H, Ar-H), 6.62, 7.07, 7.39 (m, 3H, Ar-H), 5.29 (s, 1H, Ar-OH); 13C NMR: δ 174.2 (-N=C-S-), 173.5 (-N=C-S-), 167.8 (-N=C-S-), 164.6 (-C=O), 151.3 (-N=C-N-), 149.9 (-N=C-C-,Py), 120.8, 133.7, 149.9 (Pyridine), 126.9, 127.8, 128.7, 130.6, 131.7, 134.5 (Ar-H), 105.4, 114.1, 117.3, 131.7, 144.9, 154.7 (Ar-H); FT-IR: u 3062 (-C-H=Aromatic stretching), 1686 (-C=O stretching), 1527 (-C=C- stretching), 1234 (-N-N=C- stretching), 699 (-C-S-C- = cm⁻¹; triazolo-thiadiazole) LC-MS 471.1[M-H]+, (M=471.5); Anal. Calcd for C₂₂H₁₃N₇O₂S₂: C 56.04, H 2.78, N 20.79, S 13.60%. Found: C 56.01, H 2.72, N 20.74, S 13.57%.

N-(6-ethylbenzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4b][1,3,4]thiadiazol-6-yl)benzamide (5h)

Compound 5h (M. Wt. 483.6g) was obtained in 62% yield as a dark brown color solid: mp > 250 °C (dec); ¹H NMR: δ 9.17 (s, 1H, -NH-), 7.92, 8.65 (m, 4H, pyridine), 7.62-7.92 (m, 4H, Ar-H), 7.36, 7.82, 7.93 (m, 3H, Ar-H), 1.23, 2.69 (d, 5H, -C₂H₅); 13C NMR: δ 174.3 (-N=C-S-), 174.7 (-N=C-S-), 167.3 (-N=C-S-), 164.3 (-C=O), 151.6 (-N=C-N-), 149.3 (-N=C-C-,Py), 121.5, 133.9, 149.3 (Pyridine), 127.4, 128.2, 128.7, 131.6, 132.7, 135.5 (Ar-H), 117.4, 120.5, 125.1, 130.8, 136.7, 150.6 (Ar-H) 14.8, 27.5 (- C_2H_5); FT-IR: U 3064 (-C-H=Aromatic stretching), 1683 (-C=O stretching), 1529 (-C=C- stretching), 1236 (-N-N=C- stretching), 694 (-C-S-C- = triazolo-thiadiazole) cm⁻¹; LC-MS m/z 483.1[M-H]+, (M=483.6); Anal. Calcd for C₂₄H₁₇N₇OS₂: C 59.61, H 3.54, N 20.28, S 13.26%. Found: C 59.59, H 3.51, N 20.26, S 13.23%.

N-(5,6-dimethylbenzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide (5i)

Compound **5i** (M. Wt. 483.6g) was obtained in 68% yield as a dark brown color solid; mp > 250 °C (dec); ^1H NMR: δ 9.12 (s, 1H, -NH-), 7.86, 8.67 (m, 4H, pyridine), 7.62-7.96 (m, 4H, Ar-H), 7.62, 7.72 (d, 2H, Ar-H), 2.33 (s, 1H, -CH $_3$), 2.31 (s, 1H, -CH $_3$); 13C NMR: δ 174.7 (-

N=C-S-), 174.2 (-N=C-S-), 167.2 (-N=C-S-), 164.3 (-C=O), 151.8 (-N=C-N-), 149.4 (-N=C-C-,Py), 121.8, 133.5, 149.4 (Pyridine), 127.9, 127.8, 128.3, 128.9, 131.4, 132.9, 135.3 (Ar-H), 119.4, 121.4, 127.5, 129.6, 133.2, 151.3 (Ar-H), 18.2, 18.6 (-2CH3); FT-IR: υ 3065 (-C-H=Aromatic stretching), 1687 (-C=O stretching), 1523 (-C=C- stretching), 1239 (-N-N=C- stretching), 697 (-C-S-C- = triazolothiadiazole) cm⁻¹; LC-MS m/z 483.1[M-H]+, (M=483.6); Anal. Calcd for $C_{24}H_{17}N_{7}OS_{2}$: C 59.61, H 3.54, N 20.28, S 13.26%. Found: C 59.57, H 3.52, N 20.23, S 13.21%.

N-(6-fluorobenzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide (5j)

Compound 5j (M. Wt. 473.5g) was obtained in 67% yield as a light brown color solid; mp > 250 °C (dec); ¹H NMR: δ 9.11 (s, 1H, -NH-), 7.87, 8.68 (m, 4H, pyridine), 7.61-7.98 (m, 4H, Ar-H), 7.23, **7.77**, 8.07 (m, 3H, Ar-H); 13C NMR: δ 174.3 (-N=C-S-), 173.8 (-N=C-S-), 167.4 (-N=C-S-), 164.3 (-C=O), 151.7 (-N=C-N-), 149.1 (-N=C-C-,Py), 121.1, 134.9, 149.1 (Pyridine), 127.5, 127.9, 128.5, 131.4, 132.4, 135.6 (Ar-H), 108.4, 113.7, 117.7, 131.5, 148.2, 158.6 (Ar-H); FT-IR: u 3063 (-C-1685 (-C=O H=Aromatic stretching), stretching), 1529 (-C=C- stretching), 1237 (-N-N=C- stretching), 696 (-C-S-C- = triazolo-thiadiazole) cm $^{-1}$; LC-MS m/z 473.1[M-H]+, (M=473.5); Anal. Calcd for $C_{22}H_{12}FN_7OS_2$: C 55.80, H 2.55, N 20.71, S 13.54%. Found: C 55.78, H 2.54, N 20.69, S 13.57%.

2.3. Biological activity 2.3.1. Antibacterial activity (in vitro)

Compounds (5a-j) were screened for in vitro antibacterial activity against Gram-positive bacterial strains (Bacillus subtilis [BS] and Staphylococcus aureus [SA]) and Gramnegative bacterial strains (Salmonella typhimurium [ST] and Escherichia coli [EC]) utilizing the agar diffusion assay¹¹⁻¹². The wells were dug in the media with the help of a sterile metallic borer. Recommended concentration (100 µl) of the test sample (1 mg/mL in DMSO) was introduced in the respective wells. Other wells supplemented with DMSO and reference antibacterial drug, ciprofloxacin were served as negative and positive controls, respectively. The plates were incubated immediately at 37°C for 24 hours. Activity was determined by measuring the diameter of zones showing complete inhibition (mm). Growth inhibition was compared with the standard drug. In order to clarify any participating role of DMSO in the biological screening, separate studies were carried out with the solutions alone of DMSO

ISSN: 2231–2781

and they showed no activity against any bacterial strains.

2.3.2. Antifungal activity (in vitro)

Compounds (5a-j) were also examined for antifungal activity against different fungal strains, i.e. Penicillium expansum [PE], Botryodiplodia theobromae [BT], Nigrospora sp. [NS], Trichothesium sp. [TS]. The antifungal drug, ketoconazole was used as a positive control. Antifungal screening for compounds (5a-j) and positive control was performed at a recommended concentration. The fungal strains were grown and maintained on potato dextrose agar plates. The cultures of the fungi were purified by single spore isolation technique. Each compound (5a-j) in DMSO solution was prepared for testing against spore germination of each fungus. The fungal culture plates were inoculated and incubated at 25± 2°C for 48 h. The plates were then observed and the diameters of the zone of inhibition (in mm) were measured. The percentage inhibition for fungi was calculated after five days using the formula given below: Percentage of inhibition = 100(X-Y) / X Where, X = Area of colony in control plate

3. RESULTS AND DISCUSSION 3.1. Synthesis of compounds 5a-j

To the best of our knowledge, compounds **5a-j** has not been reported previously. The characterization of the reaction product provided the first unambiguous proof of the successful synthesis of N-(benzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-

Y = Area of colony in test plate

b][1,3,4]thiadiazol-6-yl)benzamide derivatives. Elemental analysis of all compounds was in good agreement with proposed structures as mentioned in scheme 1. The structures of all compounds were consistent with the FT–IR, ¹H NMR, ¹³C NMR and LC-MS.

spectral features provide valuable information regarding the nature of functional group attached 13. In order to study the bonding mode of compound 3 to the compound 5a-j, the IR spectrum of compound 3 was compared with the spectra of compound Considerable differences to be expected were observed. The FT-IR spectrum of 5a-j showed the most relevant peaks of triazolothiadiazole ring. The band around 1680 cm⁻¹ and 1533 cm⁻¹ corresponding respectively to -C=N stretching and -C=C- stretching. The band around 1230 cm⁻¹ and 688 cm⁻¹ corresponding respectively to -N-N=Cbanding and -C-S-C- banding indicating the formation of triazolo-thiadiazole derivatives. Inspection of IR spectra of 5a-j, 3 and 4a-g reveals discernible differences. The important band due to –COOH group of 4a-g appeared [13] at 1680 cm⁻¹ almost disappeared in IR spectra of 5a-j. The bands due to –NH₂ and – SH groups observed¹³ in the spectrum of 3 are almost vanished in the IR spectra of 5a-j.

The ¹H NMR spectra of 5a-g are identical in almost all aspects. Only new signal due to substitution group is appeared at its respectable position e.g. 5b, 5c, 5g, 5h and 5i. Other detail data of each compound are presented in experimental section. All the data suggest the predicted structure shown in scheme-1.

The expected structure was thus clearly verified by the spectroscopic analysis which indicated moreover the absence of any detectable impurity, particularly of the two reagents used to prepare 5a–j. which again supported by the LC-MS Spectral features.

3.2. Biological activity 3.2.1. Antibacterial activity

Based on the data from the antibacterial studies against both Gram-positive and Gram-negative bacterial strains (Figure 1), the following observations can be made. All compounds (5a-j) exhibited antibacterial activity against both Gram-positive and Gram-negative bacterial strains with zones of inhibition (ZOI) ranging from 29 mm to 44 mm (Figure 2). Among the analogs 5a-j, compound 5d ($ZOI_{[BS]}$ = 43 mm, $ZOI_{[SA]}$ = 44 mm, $ZOI_{[ST]}$ = 43 mm, $ZOI_{[EC]}$ = 45 mm) and compound 5f ($ZOI_{[BS]}$ = 41 mm, $ZOI_{[SA]}$ = 43 mm, $ZOI_{[ST]}$ = 42 mm, $ZOI_{[EC]}$ = 44 mm) was identified as a potent antibacterial agent against all Gram-positive and Gram-negative bacterial strains. Compound 5j ($ZOI_{IBS1} = 39$ mm, $ZOI_{[SA]} = 41$ mm, $ZOI_{[ST]} = 40$ mm, $ZOI_{[EC]}$ = 42 mm), compound 5e ($ZOI_{[BS]}$ = 37 mm, $ZOI_{[SA]} = 40 \text{ mm}, ZOI_{[ST]} = 38 \text{ mm}, ZOI_{[EC]} = 41$ mm) and compound 5c ($ZOI_{[BS]} = 36$ mm, ZOI_[SA] = 38 mm, ZOI_[ST] = 36 mm, ZOI_[EC] = 39 mm) had good antibacterial activity against bacterial strains. Compound 5i (ZOI_{IBS1} = 35 mm, $ZOI_{[SA]}$ = 36 mm, $ZOI_{[ST]}$ = 34 mm, $ZOI_{[EC]}$ = 37 mm), compound 5h ($ZOI_{[BS]}$ = 33 mm, $ZOI_{[SA]} = 34$ mm, $ZOI_{[ST]} = 33$ mm, $ZOI_{[EC]} = 36$ mm) and compound 5g ($ZOI_{[BS]} = 31$ mm, $ZOI_{ISA1} = 32 \text{ mm}, ZOI_{IST1} = 31 \text{ mm}, ZOI_{IEC1} = 34$ mm) also had comparable antibacterial activity against bacterial strains. Compounds 5b and 5a exhibited less antibacterial activity. Compounds 5a-j exhibited less antibacterial activity as compare to standard antibiotic drug, ciprofloxacin ($ZOI_{[BS]}$ = 45 mm, $ZOI_{[SA]}$ = 46 mm, $ZOI_{[ST]}$ = 45 mm, $ZOI_{[EC]}$ = 47 mm).

3.2.2. Antifungal activity

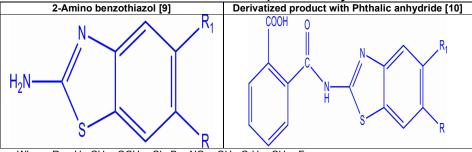
Based on the screening data from the antifungal studies (Figure 3), the following

ISSN: 2231-2781

observations can be made. All compounds (5a-i) exhibited antifungal activity against different fungal strains (Figure 4). Among the analogs 5a-j, compound 5d (ZOI_[PE] = 39 mm, $ZOI_{[BT]}$ = 40 mm, $ZOI_{[NS]}$ = 39 mm, $ZOI_{[TS]}$ = 37 mm) and Compound 5f ($ZOI_{[PE]}$ = 38 mm, $ZOI_{[BT]}$ = 38 mm, $ZOI_{[RS]}$ = 37 mm, $ZOI_{[TS]}$ = 35 mm) was found more active against all fungal strains. Compound 5j ($ZOI_{[PE]}$ = 37 mm, $ZOI_{[BT]}$ = 36 mm, $ZOI_{[NS]}$ = 35 mm, $ZOI_{[TS]}$ = 34 mm), compound 5e ($ZOI_{[PE]}$ = 36 mm, $ZOI_{[BT]}$ = 35 mm, $ZOI_{[NS]}$ = 34 mm, $ZOI_{[TS]}$ = 33 mm) and compound 5c ($ZOI_{[PE]}$ = 34 mm, $ZOI_{[TS]}$ = 32 mm) also had good antifungal activity against fungal strains. Compound 5i (ZOI_[PE] = 32 mm, ZOI_[BT] = 33 mm, $ZOI_{[NS]}$ = 31 mm, $ZOI_{[TS]}$ = 31 mm), compound 5h ($ZOI_{[PE]}$ = 30 mm, $ZOI_{[BT]}$ = 32 mm, $ZOI_{[NS]} = 30$ mm, $ZOI_{[TS]} = 30$ mm) and compound 5g (ZOI $_{\rm [PE]}$ = 28 mm, ZOI $_{\rm [BT]}$ = 31 mm, $ZOI_{[NS]}$ = 29 mm, $ZOI_{[TS]}$ = 28 mm) also had comparable antifungal activity against bacterial strains. Compounds 5b and 5a exhibited less antifungal activity. compounds (5a-j) exhibited less antifungal activity as compare to standard antibiotic drug, ketoconazole ($ZOl_{[PE]}$ = 40 mm, $ZOl_{[BT]}$ = 42 mm, $ZOl_{[NS]}$ = 41 mm, $ZOl_{[TS]}$ = 39 mm).

4. CONCLUSION

A novel series of heterocyclic compounds N-(benzo[d]thiazol-2-yl)-2-(3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)benzamide derivatives **5a-j** have been duly synthesized and characterized. Antibacterial activities were studied against gram positive and gram negative bacteria and antifungal activities of all the compounds were studied against various fungi. All the compounds were found biologically active.


Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

ACKNOWLEDGEMENTS

One of the authors Dr. H. S. Patel is greatly thankful to the authorities of University Grants Commission, New Delhi for awarding him Faculty Fellowship and Gaurav K. Patel is thankful to the authorities of Sardar Patel University for providing necessary research facilities.

Table 1: Various 2-amino benzothiazol and their derivatization with phthalic anhydride

Where: R = -H, $-CH_3$, $-OCH_3$, -CI, -Br, $-NO_2$, -OH, $-C_2H_5$, $-CH_3$, -F, $R_1 = -H$, -H, -H

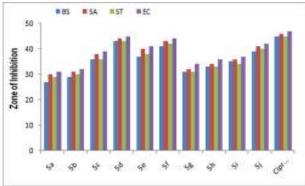


Fig. 1: Antibacterial activity of compounds 5a-j

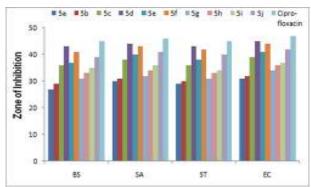


Fig. 2: Comparative antibacterial activity of compounds 5a-j

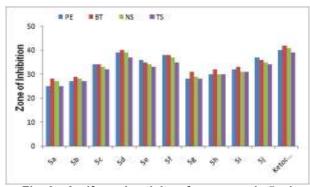


Fig. 3: Antifungal activity of compounds 5a-j

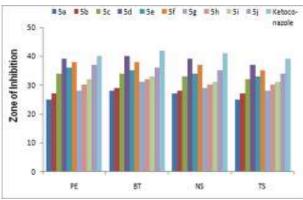


Fig. 4: Comparative Antifungal activity of compounds 5a-j

ISSN: 2231-2781

REFERENCES

- Karabasanagouda T, Adhikari AV and Shetty NS. Synthesis and antimicrobial activities of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4thiadiazines carrying thioalkyl and sulphonyl phenoxy moieties. Eur J Med Chem. 2007;42:521–529.
- El-Shehry MF, Abu-Hashem AA and El-Telbani EM. Synthesis of 3-((2,4dichlorophenoxy)methyl)-1,2,4triazolo(thiadiazoles and thiadiazines) as anti-inflamma-tory and molluscicidal agents. Eur J Med Chem. 2010;45:1906–1911.
- 3. Husain A, Naseer MA and Sarafroz M. Synthesis and anticonvulsant activity of some novel fused heterocyclic 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives. Acta Poloniae Pharmaceutica. Drug Research. 2009;66:135–140.
- Kamal A, Khan MNA, Reddy KS, Srikanth YVV and Sridhar B. Synthesis, Structural Characterization and Biological Evaluation of Novel [1,2,4]triazolo [1,5-b][1,2,4]benzothiadiazine-benzothiazole Conjugates as Potential Anticancer Agents Chem. Biol Drug Des. 2008;71:78–86.
- 5. Joshi SD, Vagdevi HM, Vaidya VP and Gadaginamath GS. Synthesis of 4-pyrrol-1-yl benzoic acid new hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems. A novel class of potential antibacterial and antitubercular agents. Eur Med 2008;43:1989-1996.
- Ibrahim DA. Synthesis and biological evaluation of 3,6-disubstituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole

- derivatives as a novel class of potential anti-tumor agents. Eur J Med Chem. 2009;44:2776–2781.
- 7. Patel GK, Patel YS and Patel HS. Synthetic and biological studies of 3-(pyridin-4-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives. Int J Chemtech Appl. 2014;3:1-10.
- 8. Muhammad H, Muhammad S, Muhammad TH, Nasim HR, Sumera Z, Muhammad AAM, Peter GJ and Jamshed I. Synthesis, Urease Inhibition, Antioxidant and Antibacterial Studies of Some 4-Amino-5-aryl-3H-1,2,4-triazole-3-thiones and their 3,6-Disubstituted 1,2,4-Triazolo[3,4-b]1,3,4-thiadiazole Derivatives. J Braz Chem Soc. 2012;23:854-860.
- Munirajasekhar D, Himaja M and Mali SV. Synthesis and anthelmintic activity of 2-amino-6-substituted benzothiazoles. Int Res J Pharm. 2011;2:114-117.
- 10. Gilani SJ, Khan SA, Alam O and Siddiqui N. Synthesis and in vitro antimicrobial evaluation of condensed heterocyclic 6-substituted 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole and 1,3,4-oxadiazole derivatives of isoniazid. Acta Pol Pharm. 2011;68:205–211.
- 11. Alam S. Synthesis, antibacterial and antifungal activity of some derivatives of 2-phenyl-chromen-4-one. J Chem Sci. 2004;166:325–331.
- Pelzar MJ, Chan ECS and Krieg NR. Antibiotics and other chemotherapeutic agents in microbiology: Blackwell Science, New York. 1998;5th Edn.
- Silverstein RM and Webste FX. Spectrometric Identification of Organic Compounds: John Wiley & Sons, Inc, New York, 2004;6th Edn.