ISSN: 2231-2781

INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Available online at www.ijrpc.com

Review Article

DOI: https://dx.doi.org/ 10.33289/IJRPC.10.4.2020.10(78)

NOVEL PHARMACOLOGICAL ACTIVITIES AND AGENTS OF MORUSALBA

Muhammad Abubakar*, Rooma Mehvish and Sammia Shahid

Department of Chemistry, Faculty of Science, University of Management and Technology, Lahore, Pakistan.

ABSTRACT

M. alba belongs to *Moraceae* family commonly known as mulberry in Pakistan locally known as Shahtoot, had very old medicinal background. In old Chinese medicine mulberry has been used for treatment of number of diseases including cancer, in inflammation and for treatment of viral infections. *M. alba* is a reach plant contains many useful chemical constituents as flavonoids, glycosides, flavones, Flavonols, alkaloids and many other pharmacological compounds. These Compounds are used for treatment of many bacterial and viral disease. This study mainly emphasis the number of chemicals can be isolated from mulberry and possible pharmacological uses of active constituents of *M. alba* including antiulcer, anti-cancer, antifungal, antibacterial, skin caring, hepatoprotective, Cardioprotective and other medicinal uses of *M. alba*.

Keywords: Pharmacological, Alkaloids, Phytochemicals, Flavonoids, Glycosides and *M. alba*.

INTRODUCTION

Less toxic approaches for treatment of diseases always been preferred by human that's why use of compounds present in nature got much attention since late 19s rather than synthetic ones. phytochemicals compounds with least toxicity and are much effective for number of diseases^{1, 6}. For such purpose *Moraceae* family is very popular one of specie Morus alba is mulberry 10-20m tall small to medium, fast growing short lived tree, mostly found in China commonly used to feed silkworm also native to subtropical region of Asia, Europe, America and Africa had number of pharmacological uses^{2,5}. Mulberry is from genus Morus with 24 species and one sub specie and known 100 varieties¹⁹. Leaves of white mulberry are glossy green coordinated at base, 5.0-7.5 cm varying size petioles, Many flowers form drupes around fruits form a sorosis, on ripening fruit color turn white from green (white mulberry) are one of characteristics of Morus alba7. Since thousands years various parts like, bark, stem, leaves root of M. alba beingused as anti-bacterial. inflammatory hypoglycemic agent even the evidences for treatment of hypertension, cold and fever in old chines traditions are important to see³. M. alba is a natural food additive to contains number of constituents like fibers. lipids, sugproteins, vitamins. carbohydrates and minerals⁴, chemical active constituents polysaccharides, flavonoids and alkaloids, triterpenes, amino acid, Iminosugar, 1deoxynojirimycin(DNJ) & 2-Ο-α galactopyranosyl-DNJ (GAL-DNJ), fagomine and also contains quercetin, isoquercitrin, rutin and quercetin 3-(6malonylglucoside). In pharmaceutical industries the use of flavonoids is very important^{8, 10}. From the stem barks of Mulberry many constituents been reported like albanol A and B, mulberranol, cyclomulberrochromene,

mulberrochomene, cyclomulberrin, mulberrin, lupeol, α -amyrin, β -amyrin, lanost-7-en-3-on, β -sitosterol and phytol. Many of these has inhibitory effects as α -amyrin, β -amyrin and lupeol show inhibitory effect in rat liver cells for kinase protein and

are anti-inflammatory while β-Sitosterol play very important role in biosynthesis of steroid and also on 5-αreductase had strong inhibitory effect^{9,13}. Mulberry has lots of medicinal uses as expectorant, antidiabetic. antiphlogistic, using leaves in powdered can lower the triacylglyceride, blood and urine glucose, LDL-cholesterol and VLDLcholesterol and fatty acid in type-2 diabetes patients when used by oral rout of administration, for antidiabetic effect the glycoproteins and piperridine alkaloid been extracted from roots of M. alba¹⁰.

Pharmacological Activities and Medicinal Use of *M. alba*

Regarding the natural drugs plants are major and a huge source used and been used against many diseases and many organisms that shows the tremendous pharmacological activities of plants against certain organism and diseases. Mulberry had enormous number of medicinal uses reported so for with the time. Pharmacological activities are discussed and phyto-chemicals are shown in the table-1.

1. Antiulcer activities of M. alba

This study carried out for newly extracted compounds from Mulberry usina spectroscopic technique know a column chromatography. These extracted using compounds like IR, UV, ¹H compounds identified different ¹H Nuclear Nuclear Magnetic Resonance and mass spectroscopy. These compounds tested for antiulcer activity in the pylorus-ligation- and ethanol-induced ulcer models. Then SOD, CAT, GR, GPx, GSH and LPO levels were calculated biochemically. Five compound extracted one of these compound that is steroid named as albosteroid showed (P<0.05. considerable P<0.01 P<0.001) antiulcer activity in the models (pylorus-ligation- and ethanol-induced ulcer models) 4.

2. Anti-Diabetic Activity of M. alba

The study reports the experiments carried out on groups of rats with control group, diabetic group, control treated with *M. alba* group and diabetic treated with *M. alba* after STZ-induced diabetes group for the study of effects of *M. alba* on peroxidation of lipids and enzymes regulates the glucose in streptozotocin (STZ). The

results during the study showed a significant increase in peroxidation of lipid in diabetic group while the diabetic rats treated with M. alba showed reduced lipid peroxidation. This study also revealed that the diabetic rats treated with M. alba also prevented by glycogen depletion and overproduction of lactate avoided with considerable scale as by other groups. Also the hexokinase, glucose 6 phosphate dehydrogenase and lactate dehydrogenase activities also increased in diabetic rats treated with M. alba while glutathione s transferase and glucose 6 phosphatase activity decreased. This study showed the diabetic rats treated with M. alba improve hepatic carbohydrate metabolism, reduce hyperglycemia by control oxidative stress and increasing the glycogen levels, prevent anaerobic glycolysis and reduce blood glucose levels by regeneration of β cells¹⁰, 1,30. The extract of leaves of Morusalba also showed considerable beneficial results for type II diabetic rats²³. The study also showed M. alba suppresses the blood glucose level by intestinal disaccharidase activity inhibitory effects that used extract of leaves of mulberry containing 0.24% 1deoxynojirimycin³⁸. The regulation of hypoglycemic condition also can achieved by using mulberry as investigation suggested⁴¹.

3. Anti-obesity Activity of M. alba

The study reported isolation of compound containing arabinan and arabinogalactan (AG II) side chains and the use as antiobesity agent. The apoptotic death studied by stimulation of MAPKs (ERK and p38) signalling pathway. The results shows the compound show inhibition of preadipocyte proliferation by reducing the fat cells as well the adipose tissues. This study revels this compound in M. albacan be used as functional ingredient in health beneficial foods¹². Further studies also reported the regulation of oxidative stress in the liver and hyperglycemia as well in obese mice by dietary consumption of M. alba^{30,33}. Investigation regarding proliferation and differentiation of 3T3-L1 preadipocytes also showed inhibition of proliferation and differentiation⁴⁷.

4. Anti-cancer Activity of M. alba

The study reported the isolation of morusin and a flavonoid structure elucidated as 3'-geranyl-3-prenyl-2',4',5,7

tetrahydroxyflavone by using spectroscopic techniques and the cytotoxicity of

compound tested against human breast carcinoma MCF-7, human hepatocarcinoma Hep3B cells and human cervical carcinoma HeLa. That isolated compound showed great results against respective tests¹⁴. Furthermore in vitro study showed the extract of root and bark of M. albainduce cell death and growth limitation in human colorectal cancer cells¹⁷. Extract of leaves of mulberry are also investigated by its beneficial effect in case of hepatocellular carcinoma (Liver cancer) by starting caspases, inhibited activity of topoisomerase IIa, in the G2/M phase induced cell cycle arrest all this action to HepG2 hepatoma growth inhibition³⁷. *M. alba*also reported inhibitory to HO-8910 cells' proliferation human ovarian cancer ⁴⁸.

5. Antiviral Activity of M. alba

Number of isolated from root bark of Morus alba L including a-acetyl-amyrin, leachianone G, oxydihydromorusin, eudraflavone В hydroperoxide. flavonoid, moralbanone. prenylated cyclomorusin, mulberroside C and kuwanon their structures determined using spectroscopic techniques and tested for antiviral effect. Compounds showed goods results by against herpes simplex type 1 virus (HSV-1) mulberroside C showed weak activity (IC50=75.4 mg/ml) while Leachianone G showed potent antiviral activity (IC50=1.6 mg/ml) against herpes simplex type 1 virus (HSV-1)¹⁶. Mulberry also found handy for treatment of foodborne viral infection as investigated effects on feline calicivirus-F9 (FCV-F9) and murine norovirus-1 (MNV-1) with juice of M. alba. That resulted reduction of polymerase gene expression of MNV-1 that inhibited viral replication³⁵.

6. Anti-inflammatory of Activity M. alba

To study the anti-inflammatory the griess method used to measure NO while Western blot technique used to analyze proteins regulation NF-κB and ERK1/2 signal. The root and bark extract of M. alba showed anti-inflammatory effect blocking production NO by suppressing iNOS, also by blocking IκB-α degradation and ERK1/2 activation inhibited NF-κB activation through p65 nuclear translocation its hyperby phosphorylation¹⁷. Moreover the experiment on rats to test the antiinflammatory effects of oxyresveratrol and mulberroside A, compounds extracted from

albaused the carrageenin-induced М. model of inflammation. Compounds Mulberroside Α and oxyresveratrol considerably showed effects to reduced paw edema in rats¹⁸. Kuwanon G isolated M. alba also showed inflammatory effect during investigation. It reduces the inflammatory cells of asthmatic mice in in the BAL fluids²⁴. For treatment of airway inflammation M. albaproven a right choice as report suggested as results of an experiment performed on mice³⁶.

7. Anticonvulsant activity of Activity M. alba

New compound from *M. alba*Morusin was isolated to study anticonvulsant activity using maximal electroshock (MES)-induced convulsion and isoniazid (INH) models. Observing the GABA level in the brain the biochemical mechanism was investigated. The dose (LD₅₀) of Morusin used up to 20 mg/kg. The level of GABA in rats brain increased it shows the anticonvulsant activity of Morusin²⁰.

8. Hepatoprotective Activity of M. alba

reports the isolation moralbosteroid from Morusalbaand tested against hepatoprotective activity in wistar albino rats induced by CCI₄. Results showed a great influence of moralbosteroid to prevent liver toxicity induced by CCI4 in rats. It inhibited the processes of free radical simply by scavenging of hydroxyl radicals and marked escalation of serum were prevented, it also increased the antioxidant enzyme levels in hepatocellular and regulated the LPO levels21. M. alba also found hepatoprotective effects on oxidative stress in HepG2 t-BHP oxidative stress induced cells²⁵. In case of liver cancer (hepatocellular carcinoma) mulberry also found useful. Results shows the inhibition of HepG2 hepatoma cells growth and activation of cell apoptosis³⁷.

9. Anti-adherence activity of M. alba

The study conducted to isolate a compound from M. albacharacterized as 1deoxynojirimycin for inhibition Streptococcus mutans biofilm formation. Crude extract of leaves of M. alba tested against Streptococcus mutans. By using micro dilution method the MICs were observed. The compound separated and purified by mean of chromatographic methods and characterized spectroscopic techniques, biofilm formation and adherence of S. mutans were evaluated with sub-MIC concentrations of extract and then by pure compound. Polysaccharide secretion on extracellular side of S. mutans effects by pure compound using both water and alkali soluble polysaccharide were studied, and using confocal microscopy effect on biofilm architecture was also Investigation of S. mutans revealed the pure isolated compound had an 8-fold good reduction of MIC as compared to crud extract (MICs, 15.6 and 125 mg/L, respectively). Even the biofilm formation of S. mutans strangely inhibited at active stage of accumulation and plateau. The 1deoxynojirimycin was found 22% more effective for reduction in alkali soluble rather than water soluble polysaccharide. The results reveled that M. alba is effective to control the overgrowth and biofilm formation of S. mutans²².

10. Anti Asthmatic Activity of M. alba

M. albafound as good anti asthmatic remedy when study carried out on mice induced with allergic asthma. The mice treated with Kuwanon G compound isolated from root bark of M. albafor 7 days. In sera Th2 cytokines and OVA-specific IgE levels were observed and changes in tissues as well. In the BAL fluid and sera of asthmatic mic the OVA-specific IgE and IL-4, IL-5, and IL-13 decreased significantly and remove number of inflammated cells, epithelium of bronchioles thickened and also inhibited the accumulation of collagen and mucus. These results suggested that albahadgreat influence regarding allergic asthma²⁴. Mulberry also found useful for treatment of lungs inflammation airway inflammation including bronchitis³⁶.

11. Antioxidant Potential of M. alba

M. alba poses a great antioxidant potential confirmed during the investigation the three quercetin compound malonvlglucoside). rutin (quercetin 3rutinoside) and isoquercitrin (quercetin 3glucoside) from leaves of M. alba isolated and tested to prevent the LDL from oxidation. Results showed the inhibition LDL oxidation that was induced by Cu ion 15, thealbosteroid Apart from this compounds isolated from mulberry also been proven as antioxidant during the investigation of antiulcer effects of *M. alba*⁴. Further studies also suggested that to maintain the antioxidant activity of M. albatemperature play very important role. A strict temperature maintenance is necessary for maintenance of antioxidant activity of compounds to isolate and to achieve significantly better results^{28, 29}, and also water stress dependent as well⁴⁰, ethanolic extracts of mulberry showed stronger effects as compared to aqueous extracts⁴⁵.

12. Antibacterial Activity of M. alba

The number of studies proven the mulberry as an antibacterial. M. alba showed successful results about inhibition of biofilm in Streptococcus mutans during the active stage of accumulation and plateau, the compound 1-deoxynojirimycin (DNJ) was isolated was the compound showed these results 22, 39. *M. alba*also showed great influence to use with other antibiotics showed excellent results in that way. It is very helpful for making strategies regarding antibiotics³. During an other study isolated compounds sophoraisoflavanoneA, sophoraflavanone D, papyriflavonol A and kuraridin from M. alba showed good antifungal and antibacterial characteristics Staphylococcus against S. aureus. epidermis, Salmonella typhimurium and Escherichia coli⁴². Ethanolic extract from leaves of mulberry also proven its antibacterial effects on bacterial species Pseudomonas aeruginosa and Staphylococcus aureus in a study⁴³.

13. Anti-melanogenesis Activity of M. alba

Extract of leaves of $\it M.$ albafound very good results for the treatment of melanogenesis during investigation and isolation of active constituents from $\it M.$ alba. During the $\it invitro$ study of isolated compounds using mushroom tyrosinase and in B16F10 melanoma cells observing the melanin content, study revealed the influence of $\it M.$ alba $\it formula alba$ increased melanin synthesis with $\it formula alba$. This study further encourage the investigation of $\it M.$ alba regarding skin pigmentation $\it formula alba$?

14. Macrophage activating Activity of M. alba

The benefits of *M. alba* regrinding macrophage reported in study, that reveled the macrophage activating nature of number of compounds as pyrrole alkaloids, Morrole A, 5-(hydroxymethyl)-1H-pyrrole-2-carboxaldehyde, 2-formyl-5(methoxymethyl)-1H-pyrrole-1-butanoic acid, 2-formyl-5-(hydroxymethyl)-1H-

pyrrole-1-butanoic acid and 2-formyl-1Hpyrrole-1-butanoic acid isolated from *M. alba* and macrophage activity evaluated by nitric oxide production. Nitric oxide, TNF-a and IL-12 production enhancement and phagocytic activity stimulation in RAW 264.7 cells showed the macrophage activating nature of *M. alba*³¹.

15. Melanin Biosynthesis Inhibitory Activity of M. alba

Experiment conducted for investigation of *in vitro* effects of methanol extract (85%) of dried leaves of mulberry on biosynthesis of melanin. Mulberroside F (moracin M-6, 3½-di-O-b-D-glucopyranoside) inhibited tyrosinase activity which is responsible for the conversion of dopachrome from dopa during melanin biosynthesis. These results proven the effects of *M. alba*as skin whiting raw material as poses mulberroside F³².

16. Anti-Hyperlipidemia Activity of M. alba

Anti-hyperlipidemia activity of M. alba tested in investigation using mixture of three herbs Artemisia capillaries (Thunb), Melissa officinalis L. (Labiatae) and Morus alba L. (Moraceae) on mice for 12 weeks fed a high-fat diet that gained weight and mice fed a low fat diet. The mice fed with high fat diet and mixture of herbs did not gained weight as much mice not fed with herbs mixture but fed with high fat diet. herb mixture regulated Using metabolism, adiposity and weight gain. Not only this herbs treatment also inhibited the hepatic lipid accumulation and decreased the triglycerides and total cholesterol circulating levels. These results are quite helpful to understand the influence of M. hyperlipidemia³³. albaregarding Investigation of hypolipidemic effect of M. albaon rats also reported the liver triglyceride and serum levels, atherogenic index and low-density lipoprotein cholesterol decline, at the same time increased the high-density lipoprotein cholesterol 46 .

17. Cardioprotective Activity of M. alba

In traditional Chinese medicine *Morusalba*used to treat number of diseases as expectorant, headache, diuretic, diabetes and many more. In recent days regarding *M. alba*the study conducted to investigate its *in vitro* and *in vivo* effects to

cardiovascular disorders as Thromboxane B2 and Thrombus formation respectively. Morusinol extracted from mulberry, antiplatelet potential tested on rabbit by in vitro platelet aggregation Thromboxane B2 formation assays. In vivo investigation of formation of arterial Thrombus induced thrombosis model of ferric chloride (FeCl₃). Results were quite surprising as expected, collagen TXB2formation aggregation. inhibited by morusinol. Thrombus formation for collagen-induced TXB₂ 99% and for arachadonic acid-induced TXB₂ formation for 29.2% reduced. These results showed morusinol had good potential for treatment of cardiovascular diseases as investigated³⁴. Studies also reveled in addition to extract of *M. alba*using Monacolin K and Berberin can improve the glucose metabolism and plasma cholesterol regulation. Which be helpful in cardiovascular diseases44.

18. Antifungal Activity of M. alba

Prenylated flavonoids from medicinal plants including M. albaisolated and tested against two fungal species Candida albicans and Saccaromyces cerevisiaeone the isolated compounds sophoraisoflavanone A, sophoraflavanone D, kuraridin and papyriflavonol A showed antifungal characteristics well⁴². antibacterial as In another investigation of toxicity of M. albaon mice also revealed the antifungal activity of an ethanolic extract from leaves of mulberry to many fungal species as Aspergillus flavus, Candida tropicalis, Candida krusei and Candida albicans⁴³.

Classification of M. alba49

Kingdom: Plantae

Subkingdom: Tracheobionta Superdivision: Spermatophyta

Division: Magnoliophyta Class: Magnoliopsida Subclass: Hamamelididae

Order: Urticales Family: Moraceae Genus: Morus L. Species: Morusalba L.

Common names

Mulberry, Silkworm mulberry, Shahtoot

(Urdu).

Table 1: Presenting various chemical constituents of plant Morusalba

constituents of plant Morusaida		
Chemical Compounds	Parts	References
Protein	Leaves	2, 54
Fat Fatty saids	Leaves	13
Fatty acids Amino Acids	Different parts of plants Fruit	53
Carbohydrate	Different parts of plants	4
Fibre	Leaves	2
Ash content	Leaves	2
Saponin	Leaves	2, 4
Alkaloids	Leaves, fruits	2, 4, 59
Nortropane Alkaloids	Fruit	53
Flavonols Flavonoids	Different parts of plants Leaves	6, 13, 14, 51 2, 3, 4, 8
Flavan	Fruit, Leaves	55, 60
Coumarin	Bark	57
Terpenoids	Different parts of plants	4, 9
Tannins	Leaves	2, 4
Phytate Anthroquinana Staroida	Leaves	2
Anthraquinone Steroids	Different parts of plants	4
Octadecanol	Leaves	5
Polysaccharide	Different parts of plants	12
4-hydroxy octadec-6	Leaves	5
9-dienoic acid	Leaves	5
β-sitosterol	Leaves	5
Stigmasterol Protocatechuic acid	Leaves Different parts of plants	5
	' '	6
Vanillic acid	Different parts of plants	6
Benzoic acid derivatives & derivatives	Different parts of plants	6, 55, 56
Chlorogenic acid	Different parts of plants, fruit	6, 55
Caffeic acid	Different parts of plants	6, 13, 55, 56
Coumaric acid	Different parts of plants	6, 55
Ferulic acid	Different parts of plants	6, 55
Gallic acid Ellagic acid	Fruits Fruits	55 55
Gentisic acid	Fruits	55
Total cinnamic acid	Different parts of plants	6
derivatives		
Quercetin	Different parts of plants	6, 58
Kaempferol Rutin	Different parts of plants Different parts of plants	6, 58 13, 52, 55
Citric acid	Fruit, Leaves	50, 56
Tartaric acid	Fruit	50
Malic acid	Fruit, Leaves	50, 56
Quinic acid	Leaves	56
Succinic acid	Fruit	50 50
Lactic acid Fumaric acid	Fruit Fruit	50 50
Acetic acid	Fruit	50
Benzofuran	Bark	57
2-arylbenzofuran	Root bark	51, 56
derivatives		
Maclurin Isoquercetrin	Root bark Root bark	52 52
Resveratrol	Root bark	52
Trypsin inhibitor	Leaves	2
Calcium	Leaves	2
Phosphorus	Leaves	2
Zinc	Leaves	2
Potassium Magnesium	Leaves Leaves	2 2
kuwanon G	Leaf	3
Morusin U	Leaf	3

Leaf	3
Leaf	3
Different parts of plants	4, 57
Bark	57
Fruits	59
	Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf

Table 2: Presenting various pharmacological activities attributed to plant M. alba

Activity	References	
Hepatoprotective	25, 37	
Hypoglycemic	33, 46	
Anti-Ulcer	4	
Anti-inflammatory	17, 18, 24, 36	
Antioxidant	4, 15, 26, 28, 29, 40, 45, 52	
Antifungal	42, 43	
Antibacterial	3, 22, 39, 42, 43	
Anti-diabetic	10, 11, 23, 30, 41	
Anti-convulsant	20	
Anti-Asthmatic	24, 36	
Anti-Cancer	17, 37, 48	
Anti-obesity	12, 30, 33, 47	
Anti-viral	16, 35	
Anti-adherence	22	
Anti Melanogenesis	27	
Macrophage	31	
Skin caring	32, 27	
Cardioprotective	34, 44	

Fig. 1: Root of M. alba

Fig. 2: Flower of M. alba

Fig. 3: Whole plant of M. alba

Fig. 4: Fruit of M. alba

Fig. 5: Leaves of M. alba

Fig. 6: Stem of M. alba

REFERENCES

- Zafar MS, Muhammad F, Javed I, Akhtar M, Khaliq T, Aslam B, Waheed A, Yasmin R and Zafar H. White mulberry (Morus alba): A brief phytochemical and pharmacological evaluations account. International journal of agriculture and biology. 2013;15(3).
- 2. Toyinbo EO, Adevvumi OJ and Adekunle EA. Phytochemical analysis, nutritional composition and antimicrobial activities of white mulberry (Morusalba). Pakistan Journal of Nutrition. 2012;11(5):456-60.
- 3. Aelenei P, Luca SV, Horhogea CE, Rimbu CM, Dimitriu G, Macovei I, Silion M, Aprotosoaie AC and Miron A. Morusalba leaf extract: Metabolite profiling and interactions with antibiotics against Staphylococcus spp. including MRSA. Phytochemistry Letters. 2019;31:217-24.
- 4. Ahmad A, Gupta G, Afzal M, Kazmi I and Anwar F. Antiulcer and antioxidant activities of a new steroid from Morus alba. Life sciences. 2013;92(3):202-10.
- Ahmed T, Shoeb M, Islam MN, Mizanur M, Rhaman EA and Nahar N. Secondary metabolites from the leave extracts of Morus alba L. Asian J Pharmacogn. 2019;3(4):36-41.
- Sánchez-Salcedo EM, Mena P, García-Viguera C, Martínez JJ and Hernández F. Phytochemical evaluation of white (Morusalba L.) and black (Morusnigra L.) mulberry fruits, a starting point for the assessment of their beneficial properties. Journal of functional foods. 2015;12:399-408.
- 7. Chan EW, Lye PY and Wong SK. Phytochemistry, pharmacology, and clinical trials of Morusalba. Chin J Nat Med. 2016;14(1):17-30.
- 8. Wang J, Wu FA, Zhao H, Liu L and Wu QS. Isolation of flavonoids from mulberry (Morusalba L.) leaves with macroporous resins. African Journal of Biotechnology. 2008;7(13).
- 9. Ali A and Ali M. New triterpenoids from Morusalba L. stem bark. Natural product research. 2013;27(6):524-31.

- 10. Hamdy SM. Effect of Morus Alba Linn extract on enzymatic activities in diabetic rats. J ApplSci Res. 2012;8(1):10-6.
- Mohammadi J and Naik PR. The histopathologic effects of Morusalba leaf extract on the pancreas of diabetic rats. Turkish Journal of Biology. 2012;36(2):211-6.
- 12. Choi JW, Synytsya A, Capek P, Bleha R, Pohl R and Park YI. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morusalba L.). Carbohydrate polymers. 2016;146:187-96.
- 13. Radojković M, Zeković Z, Mašković P, Vidović S, Mandić A, Mišan A and Đurović S. Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. The Journal of Supercritical Fluids. 2016;117:50-8.
- Dat NT, Binh PT, Van Minh C, Huong HT and Lee JJ. Cytotoxic prenylated flavonoids from Morusalba. Fitoterapia. 2010;81(8):1224-7.
- Doi K, Kojima T, Makino M, Kimura Y and Fujimoto Y. Studies on the constituents of the leaves of Morus alba L. Chemical and pharmaceutical bulletin. 2001;49(2):151-3.
- Du J, He ZD, Jiang RW, Ye WC, Xu HX and But PP. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry. 2003;62(8):1235-8.
- 17. Eo HJ, Park JH, Park GH, Lee MH, Lee JR, Koo JS and Jeong JB. Anti-inflammatory and anti-cancer activity of mulberry (Morusalba L.) root bark. BMC complementary and alternative medicine. 2014;14(1):200.
- Chung KO, Kim BY, Lee MH, Kim YR, Chung HY, Park JH and Moon JO. Invitro and invivo anti-inflammatory effect of oxyresveratrol from Morusalba L. Journal of Pharmacy and Pharmacology. 2003;55(12):1695-700.
- 19. Ercisli S and Orhan E. Chemical composition of white (Morusalba), red (Morusrubra) and black

- (Morusnigra) mulberry fruits. Food Chemistry. 2007;103(4):1380-4.
- Gupta G, Dua K, Kazmi I and Anwar F. Anticonvulsant activity of Morusin isolated from Morusalba: Modulation of GABA receptor. Biomedicine & Aging Pathology. 2014;4(1):29-32.
- 21. Gupta G, Verma R, David SR, Chellappan DK, Anwar F and Dua K. Hepatoprotective activity of moralbosteroid, a steroidal glycoside isolated from Morusalba. Oriental Pharmacy and Experimental Medicine. 2014;14(3):285–9.
- 22. Islam B, Khan SN, Haque I, Alam M, Mushfiq M and Khan AU. Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morusalba. Journal of Antimicrobial Chemotherapy. 2008;62(4):751-7.
- Hunyadi A, Martins A, Hsieh TJ, Seres A and Zupkó I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PloS one. 2012;7(11).
- 24. Jung HW, Kang SY, Kang JS, Kim AR, Woo ER and Park YK. Effect of kuwanon G isolated from the root bark of Morusalba on ovalbumin induced allergic response in a mouse model of asthma. Phytotherapy research. 2014;28(11):1713-9.
- 25. Jung JW, Ko WM, Park JH, Seo KH, Oh EJ, Lee DY, Lee DS, Kim YC, Lim DW, Han D and Baek NI. Isoprenylated flavonoids from the root bark of Morusalba and their hepatoprotective and neuroprotective activities. Archives of pharmacal research. 2015;38(11):2066-75.
- 26. Katsube T, Imawaka N, Kawano Y, Yamazaki Y, Shiwaku K and Yamane Y. Antioxidant flavonol glycosides in mulberry (Morusalba L.) leaves isolated based on LDL antioxidant activity. Food chemistry. 2006;97(1):25-31.
- 27. Jeong JY, Liu Q, Kim SB, Jo YH, Mo EJ, Yang HH, Song DH, Hwang BY and Lee MK. Characterization of melanogenesis inhibitory constituents of Morus alba leaves and optimization of

- extraction conditions using response surface methodology. Molecules. 2015;20(5):8730-41.
- 28. Katsube T, Imawaka N, Kawano Y, Yamazaki Y, Shiwaku K and Yamane Y. Antioxidant flavonol glycosides in mulberry (Morusalba L.) leaves isolated based on LDL antioxidant activity. Food chemistry. 2006;97(1):25-31.
- 29. Katsube Τ, Tsurunaga Υ, Sugiyama M, Furuno T and Yamasaki Y. Effect of air-drying temperature antioxidant on stability capacity and of polyphenolic compounds in mulberry (Morus alba L.) leaves. Food Chemistry. 2009;113(4):964-9.
- 30. Katsube T, Yamasaki M, Shiwaku K, Ishijima T, Matsumoto I, Abe K and Yamasaki Y. Effect of flavonol glycoside in mulberry (Morus alba L.) leaf on glucose metabolism and oxidative stress in liver in diet- induced obese mice. Journal of the Science of Food and Agriculture. 2010;90(14):2386-92.
- 31. Kim SB, Chang BY, Jo YH, Lee SH, Han SB, Hwang BY, Kim SY and Lee MK. Macrophage activating activity of pyrrole alkaloids from Morusalba fruits. Journal of ethnopharmacology. 2013;145(1):393-6.
- 32. Lee SH, Choi SY, Kim H, Hwang JS, Lee BG, Gao JJ and Kim SY. Mulberroside F isolated from the leaves of Morusalba inhibits melanin biosynthesis. Biological and Pharmaceutical Bulletin. 2002;25(8):1045-8.
- 33. Lee J, Chae K, Ha J, Park BY, Lee HS, Jeong S, Kim MY and Yoon M. Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis, and Artemisia capillaris in high-fat dietinduced obese mice. Journal of ethnopharmacology. 2008;115(2): 263-70.
- 34. Lee JJ, Yang H, Yoo YM, Hong SS, Lee D, Lee HJ, Lee HJ, Myung CS, Choi KC and Jeung EB. Morusinol extracted from Morusalba inhibits arterial thrombosis and modulates platelet activation for the treatment of cardiovascular disease. Journal of

- atherosclerosis and thrombosis. 2012:1204020479.
- Lee JH, Bae SY, Oh M, Kim KH and Chung MS. Antiviral effects of mulberry (Morus alba) juice and its fractions on foodborne viral surrogates. Foodborne pathogens and disease. 2014;11(3):224-9.
- 36. Lim HJ, Jin HG, Woo ER, Lee SK and Kim HP. The root barks of Morusalba and the flavonoid constituents inhibit airway inflammation. Journal of ethnopharmacology. 2013;149(1):169-75.
- 37. Naowaratwattana W, De-Eknamkul W and De Mejia EG. Phenolic-containing organic extracts of mulberry (Morus alba L.) leaves inhibit HepG2 hepatoma cells through G2/M phase arrest, induction of apoptosis, and inhibition of topoisomerase IIa activity. Journal of medicinal food. 2010;13(5):1045-56.
- Oku T, Yamada M, Nakamura M, Sadamori N and Nakamura S. Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity. British journal of nutrition. 2006;95(5):933-8.
- 39. Park KM, You JS, Lee HY, Baek NI, Hwang JK and Kuwanon G. An antibacterial agent from the root bark of Morusalba against oral pathogens. Journal of ethnopharmacology. 2003;84(2-3):181-5.
- 40. Reddy AR, Chaitanya KV, Jutur PP and Sumithra K. Differential antioxidative responses to water stress among five mulberry (Morusalba L.) cultivars. Environmental and experimental botany, 2004;52(1):33-42.
- 41. Singab AN, El-Beshbishy HA, Yonekawa M, Nomura T and Fukai T. Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. Journal of ethnopharmacology. 2005; 100(3):333-8.
- 42. Sohn HY, Son KH, Kwon CS, Kwon GS and Kang SS. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated

- from medicinal plants: Morusalba L., Morusmongolica Schneider, Broussnetiapapyrifera (L.) Vent,SophoraflavescensAit and EchinosophorakoreensisNakai. Phytomedicine. 2004;11(7-8):666-72.
- 43. De Oliveira AM, Mesquita MD, da Silva GC, de Oliveira Lima E, de Medeiros PL, Paiva PM, Souza IA and Napoleão TH. Evaluation of toxicity and antimicrobial activity of an ethanolic extract from leaves of Morus alba L.(Moraceae). Evidence-Based Complementary and Alternative Medicine. 2015.
- 44. Trimarco V, Izzo R, Stabile E, Rozza F, Santoro M, Manzi MV, Schiattarella Serino F, Esposito G and Trimarco B. Effects of а new combination nutraceuticals with Morus alba on lipid profile, insulin sensitivity and endotelial function in dyslipidemic cross-over. subjects. Α randomized, double-blind trial. Hiah Blood Pressure & Cardiovascular Prevention. 2015;22(2):149-54.
- 45. Wang W, Zu Y, Fu Y and Efferth T. In vitro antioxidant and antimicrobial activity of extracts from Morusalba L. leaves, stems and fruits. The American journal of Chinese medicine. 2012;40(02):349-56.
- 46. Yang X, Yang L and Zheng H. Hypolipidemic and antioxidant effects of mulberry (Morusalba L.) fruit in hyperlipidaemia rats. Food and Chemical Toxicology. 2010;48(8-9):2374-9.
- 47. Yang Y, Yang X, Xu B, Zeng G, Tan J, He X, Hu C and Zhou Y. Chemical constituents of Morus alba L. and their inhibitory effect on 3T3-L1 preadipocyte proliferation and differentiation. Fitoterapia. 2014;98:222-7.
- 48. Zhang M, Rong-Rong WA, Man CH, Zhang HQ, Shi SU and Zhang LY. A new flavanone glycoside with anti-proliferation activity from the root bark of Morusalba. Chinese Journal of Natural Medicines. 2009;7(2):105-7.
- 49. Butt MS, Nazir A, Sultan MT, Schroën K and Morusalba L. nature's functional tonic. Trends in

- food science and technology. 2008;19(10):505-12.
- 50. Gundogdu M, Muradoglu F, Sensoy RG and Yilmaz H. Determination of fruit chemical properties of Morusnigra L., Morus alba L. and Morusrubra L. by HPLC. Scientia Horticulturae. 2011;132:37-41.
- 51. Ha MT, Tran MH, Ah KJ, Jo KJ, Kim J, Kim WD, Cheon WJ, Woo MH, Ryu SH and Min BS. Potential pancreatic lipase inhibitory activity of phenolic constituents from the root bark of Morusalba L. Bioorganic and medicinal chemistry letters. 2016;26(12):2788-94.
- 52. Chang LW, Juang LJ, Wang BS, Wang MY, Tai HM, Hung WJ, Chen YJ and Huang MH. Antioxidant and antityrosinase activity of mulberry (Morusalba L.) twigs and root bark. Food and Chemical Toxicology. 2011;49(4):785-90.
- 53. Kusano G, Orihara S, Tsukamoto D, Shibano M, Coskun M, Guvenc A and Erdurak CS. Five new nortropane alkaloids and six new amino acids from the fruit of Morus alba L INNÉ growing in Turkey. Chemical and pharmaceutical bulletin. 2002;50(2):185-92.
- 54. Kandylis K, Hadjigeorgiou I and Harizanis P. The nutritive value of mulberry leaves (Morusalba) as a feed supplement for sheep. Tropical animal health and production. 2009;41(1):17-24.
- 55. Natić MM, Dabić DČ, Papetti A, Akšić MM, Ognjanov V, Ljubojević

- M and Tešić ŽL. Analysis and characterisation of phytochemicals in mulberry (Morusalba L.) fruits grown in Vojvodina, North Serbia. Food chemistry. 2015;171:128-36.
- 56. Sánchez-Salcedo EM, Tassotti M, Del Rio D, Hernández F, Martínez JJ and Mena P. (Poly) phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morusnigra L.) mulberry leaves by using a non-targeted UHPLC–MS approach. Food chemistry. 2016;212:250-5.
- 57. Piao SJ, Qiu F, Chen LX, Pan Y and Dou DQ. New stilbene, benzofuran, and coumarin glycosides from Morusalba. Helvetica ChimicaActa. 2009;92(3):579-87.
- 58. Sánchez-Salcedo EM, Mena P, García-Viguera C, Hernández F and Martínez JJ. (Poly) phenolic compounds and antioxidant activity of white (Morusalba) and black (Morusnigra) mulberry leaves: Their potential for new products rich in phytochemicals. Journal of Functional Foods. 2015;18:1039-46.
- 59. Wang X, Kang J, Wang HQ, Liu C, Li BM and Chen RY. Three new alkaloids from the fruits of Morusalba. Journal of Asian natural products research. 2014;16(5):453-8.
- 60. Yang Y, Zhang T, Xiao L and Chen RY. Two novel flavanes from the leaves of Morusalba L. Journal of Asian natural products research. 2010;12(3):194-8.