INTRODUCTION
Breast cancer is a cancer that starts in the cells of breast. Breast cancer is overwhelmingly a female disease, but about 1% of cases occur in men (around 300 per year in the UK). After lung cancer, breast cancer is the second most common cancer in women worldwide and the fifth most common cause of cancer death. In 2007, breast cancer caused 40,460 deaths worldwide and in 2008, an estimated 182,480 new cases of invasive breast cancer diagnosed among women, as well as an estimated 67,770 additional cases of in situ breast cancer. Breast cancer is an urgent public health problem in high-resource regions and is becoming an increasingly urgent problem in lower source regions, where incidence rates have been increasing by up to 5% per year. Breast cancer like other cancers can be benign or malignant. Cells from malignant tumors can spread (metastasize) to other parts of the body. The most common are the bones, liver, lungs, and brain. The new tumor has the same kind of abnormal cells and the same name as the primary tumor. Although the most important risk factor for the development of breast cancer is age, risk may be affected by age at menarche, first pregnancy, age at menopause, use of exogenous estrogens, susceptible gene BRCA1 and BRCA2 mutations, and family history. Obesity and heavy drinking also significantly increases the risk. Although early detection and improved treatment modalities over the years have increased survival rates, extensive efforts have been directed at improving outcomes with more targeted therapies.

ABSTRACT
Breast cancer is the most common cause of cancer-related death among women worldwide, with case fatality rates highest in low-resource countries. Despite significant scientific advances in its management, most of the world faces resource constraints that limit the capacity to improve early detection, diagnosis, and treatment of the disease. There are different types of breast cancer and different treatments that can work for each. Breast cancer is a highly complex disease with many treatment options including surgery, radiotherapy, hormonal therapy, biological therapy and chemotherapy. Optimizing standard treatment modalities for breast cancer has improved the outlook for women afflicted with it, but the fact that 40% still ultimately die from the disease highlights the need for new therapies. Remarkable advances in molecular immunology and biotechnology have created a unique opportunity for developing active vaccination strategies that engage the patient’s own immune system in the fight against breast cancer. This review discusses some of the recent general strategies in cancer therapy and chemoprevention with the intention to promote the exploitation of the hallmarks of cancer and the novel targets which will be used safe and effective management of breast cancer.
The hallmarks of cancer include self-sufficiency in growth signals, insensitivity to antigrowth signals, evading apoptosis, limitless replicative potential, sustained angiogenesis, tissue invasion and metastasis, and genomic instability (Hanahan and Weinberg, 2000). Using our knowledge about the hallmarks of cancer, clinicians are encouraged to exploit these components in order to improve breast cancer treatment strategies (Sledge and Miller, 2003).

Treatment of Breast Cancer

Surgery and radiation therapy are local treatments: They remove or destroy cancer in the breast. When breast cancer has spread to other parts of the body, local therapy may be used to control the disease in those specific areas.

a. Surgery: Surgery is the most common treatment for breast cancer. There are several types of surgery. Breast-sparing surgery: Lumpectomy is the removal of the breast tumor (the "lump") and some of the normal tissue that surrounds it. Lumpectomy is a form of "breast-conserving" or "breast preservation" surgery. There are several names used for breast-conserving surgery: biopsy, lumpectomy, partial mastectomy, resection, quadrantectomy, or wedge resection. Technically, a lumpectomy is a partial mastectomy, because part of the breast tissue is removed. But the amount of tissue removed can vary greatly. Quadrantectomy, for example, means that roughly a quarter of your breast will be removed. This treatment destroys cancer cells that may remain in the breast.

Mastectomy: An operation to remove the breast (or as much of the breast tissue as possible) is a mastectomy. In total (simple) mastectomy, the surgeon removes the whole breast. Some lymph nodes under the arm may also be removed. In modified radical mastectomy, the surgeon removes the whole breast, and most or all of the lymph nodes under the arm. Often, the lining over the chest muscles is removed. A small chest muscles also may be taken out to make it easier to remove the lymph nodes.

b. Radiation therapy: X-Ray Radiation therapy (XRT) is used to "sterilize" the remaining breast. XRT destroys cells by fracturing their DNA sequence through free radical creation and release. Complications associated include fatigue, breast erythema and edema, ipsilateral extremity edema long term (5-17%), and rib fractures.

Systemic therapy: Hormone therapy, biological therapy and chemotherapy are systemic treatments. These therapies can be initiated before surgery, as in neoadjuvant therapies, or after surgery, as in adjuvant therapies. They enter the bloodstream and destroy or control cancer throughout the body.

Anti-hormonal medication: Estrogen is the major growth promoter for the breast cancer cells. In most cases cancer cells have receptors that allow circulating estrogen to attach to the tumor cell, providing food for growth. It is desirable to have this receptor, which makes the tumor estrogen receptor(ER)-positive and/or progesterone receptor (PR)-positive. This type of tumor cell is potentially responsive to anti-hormonal systemic treatment. If a tumor is ER and PR negative, then it is unlikely that the anti-
hormonal drugs will be used. Often, chemotherapy alone is suggested as systemic treatment. If a tumor is ER or PR positive, often both chemotherapy and anti-hormonal therapy are used, depending on the stage of the cancer. Sequential endocrine therapy continues as long as the patient remains hormone sensitive. Once hormone-resistant disease develops, chemotherapy is the current alternative.

Selective Estrogen Receptor Modulators (SERMs):

- **Tamoxifen** is a selective estrogen receptor modulator (SERM) in that it is an antagonist in the breast but agonist in the uterus. Tamoxifen, typically given as adjuvant treatment for five years, has been shown to have a 26% reduction in recurrence and a 14% annual reduction in deaths. While the use of tamoxifen has shown success, an undesirable effect is the stimulation of uterine or endometrial carcinomas. Under current evaluation as substitutes to tamoxifen are second generation SERMs, such as raloxifene which block the production of estrogen and has been shown to be superior to tamoxifen or even be beneficial for combination treatments.

Progestins: PR-positive advanced breast tumors can respond to the use of synthetic progesterone-like drugs such as megesterol acetate (MegaceR). Megestrol acetate was also shown to reduce the frequency of hot flushes in postmenopausal breast cancer patients. Progestins are usually restricted to second or third line therapies following aromatase inhibitors and/or antiestrogens.

Luteinising Hormone Releasing Hormone (LHRH) agonists:

- LHRH analogs such as goserelin (ZoladexR) and leuprolide (LupronR) are a group of drugs that suppress ovarian estrogen production down to postmenopausal levels, essentially inducing a potentially reversible medical ovarian ablation. They are most effective in ER-positive early breast cancer in premenopausal women.

Aromatase Inhibitors: In postmenopausal women, estrogen synthesis occurs in non-ovarian peripheral tissues. This mainly follows the route of conversion by aromatase, of the androgenic substrates androstenedione and testosterone to estrone and estradiol in the adrenal glands and adipose tissue. AIs are of no value in premenopausal patients where the ovaries are the primary sites of estrogen production. There are two main structural types of aromatase inhibitor: 1) steroidal, substrate analogs such as 4-hydroxyandrostenedione (formestane) and exemestane, and 2) reversible nonsteroidal imidazole-base inhibitors (e.g. anastrozole (ArimidexR) and letrozole (FemaraR)). These are known as type I and type II inhibitors, respectively. Use of third-generation AIs lowers total body aromatization and plasma estradiol levels by more than 95%.

Aromatase Inhibitors: In postmenopausal women, aromatase inhibitors (AIs) are used to inhibit estrogen synthesis by inhibiting the enzyme aromatase, which converts androgens to estrogens. The two main types of AIs are steroidal (e.g., formestane) and non-steroidal (e.g., anastrozole, letrozole). AIs are preferred over tamoxifen in postmenopausal women because they do not increase the risk of endometrial cancer.

Goserelin (ZoladexR): Goserelin is a synthetic LHRH analog used to induce a state of hypoestrogenism, also known as a medical oophorectomy. It is commonly used in combination with an AI to further reduce estrogen levels.

Lupron (LupronR): Lupron is another LHRH analog used to inhibit the production of gonadotropins, which in turn reduces estrogen and testosterone levels. It is often prescribed to women with advanced breast cancer who have already undergone chemotherapy and tamoxifen treatment.

Tamoxifen: Tamoxifen is a SERM that works by blocking estrogen receptors in breast tissue, leading to a reduction in breast cancer risk. It is commonly used as an adjuvant therapy following surgery and chemotherapy.

Raloxifene: Raloxifene is a SERM that is primarily used for prevention and treatment of osteoporosis. It has been shown to decrease the risk of breast cancer in postmenopausal women.

Megestrol Acetate (MegaceR): Megestrol acetate is a progestin used to control symptoms of advanced breast cancer, such as pain and swelling. It is also used to reduce the frequency of hot flashes in postmenopausal women.

Anastrozole (ArimidexR): Anastrozole is an AI that inhibits the conversion of androgens to estrogens. It is typically used in combination with other therapies for advanced breast cancer.
e) Telomerase inhibitors: Telomerase inhibitors that actually work through a telomere-based mechanism should (i) reduce telomerase activity, but initially not affect cell growth rates; (ii) lead to progressive shortening of telomeres with each cell division; and (iii) cause cells to die or undergo growth arrest. (21) Telomerase inhibitors have been previously shown to inhibit growth and induce apoptosis in cancer cells (129,130,131,132,133,134,135). It is thus necessary to develop a regimen that takes advantage of the universal expression of telomerase in breast cancer cells while not compromising the patient with the continued growth of the tumor during the weeks of anti-telomerase treatment. The next approach is to examine whether the combination of telomerase inhibition and low doses of other therapeutic agents, such as cytotoxic chemotherapeutic agents, angiogenesis inhibitors, and radiation therapy, can have a greater effect at inhibiting breast cancer growth than either reagent alone. Data supporting this hypothesis shown in cancer cells treated with telomerase inhibitors in combination with various antiproliferative agents such as topoisomerase inhibitors, cisplatin, and doxorubicin, or irradiation (Fig 3; Ludwig et al, 2000; Mo et al, 2003; Chen et al, 2003). Treating the cells for a short time with telomerase inhibitors induced enough telomere dysfunction to render the cells even more sensitive to irradiation (Figure 3).

f) Estrogen receptor antagonists: An important addition to the armamentarium of endocrine therapies is the selective estrogen receptor antagonist fulvestrant (Faslodex®), also termed “an estrogen receptor down-regulator” (22). As a steroidal analog of 17α-estradiol, fulvestrant has a chemical structure that is similar to that of estradiol, but distinct from tamoxifen and other nonsteroidal hormonal agents. Both tamoxifen and fulvestrant competitively inhibit the binding of estradiol to the ER. In contrast to tamoxifen, fulvestrant has no agonist effect and downregulates the expression of the ER. With estradiol as the comparator, fulvestrant’s ER binding affinity (0.89) is greater than tamoxifen’s (0.025) (28, 29).

Biological therapy: Human epidermal growth factor receptor 2 (HER2) has been found to be an important prognostic and predictive marker of treatment response in women with breast cancer in the adjuvant setting and advanced disease. The HER2 gene is amplified and the HER2 protein is overexpressed in 20% to 25% of breast cancers with resulting poor prognosis and shortened overall survival (OS) (30, 31). The HER2 gene, also known as HER2/neu is located on chromosome 17q and belongs to the human epithelial receptor (HER) family of genes. It encodes a 185 kDa transmembrane tyrosine kinase growth factor receptor, which mediates signaling for cell proliferation and survival (32). HER2 gene amplification and resultant protein overexpression are associated with a more aggressive clinical course. Several murine monoclonal antibodies against the extracellular domain of the HER2 protein have been found to inhibit proliferation of cells overexpressing HER2 (33). However, to minimize immunogenicity, the antigen-binding region of one of the more effective antibodies was fused to the framework region of the human IgG leading to trastuzumab. Trastuzumab (Herceptin, Genentech Inc., South San Francisco, California, U.S.A.) is a humanized monoclonal antibody that binds to the HER2. It was approved in 1998 by the U.S. Food and Drug Administration (FDA) for the treatment of HER2-positive metastatic breast cancer (MBC) in the first-line setting in combination with paclitaxel, or as monotherapy for patients who had received at least one prior chemotherapy regimen for HER2-positive MBC. Trastuzumab is now predominantly
used in combination with chemotherapy in the first-line setting of metastatic disease due to its clear advantage in improving clinical outcome. Chemotherapy: They are used to kill circulating cancer cells that could grow in vital organs, causing metastatic cancer (cancer which has spread beyond the breast). Women with ER+ or PR+ tumors, symptomatic visceral metastasis, or hormone refractory disease should receive chemotherapy. Identifies preferred first-line single agents for breast cancer. Other active agents include cisplatin, carboplatin, paclitaxel protein-bound particles for injectable suspension, etoposide, vinblastine, and fluorouracil by continuous infusion. Adjunctive combination chemotherapy offers higher response rates and longer time to disease progression. Table 2 lists first-line combination regimens e.g., cyclophosphamide, doxorubicin, and fluorouracil (FAC/CAF); fluorouracil, epirubicin, and cyclophosphamide (FEC); doxorubicin and cyclophosphamide (AC); epirubicin and cyclophosphamide (EC); doxorubicin in combination with docetaxel or paclitaxel (AT); and cyclophosphamide, methotrexate, and fluorouracil (CMF). Novel Targets in Therapy of Breast Cancer: Anti-epidermal growth factor receptor strategies for advanced breast cancer: The ErbB family of receptors belong to the type I superfamily of receptor tyrosine kinases. Four members of this family have been identified: Epidermal growth factor receptor (EGFR) or ErbB1/HER1, ErbB2/Neu/HER2, ErbB3/HER3, and ErbB4/HER4. They are expressed in a variety of tissues including epithelial, mesenchymal, and neural origin, where they exert effects on development, cellular proliferation, and differentiation. Through a complex network of downstream cascades, their dysregulation confers poorer prognosis in breast and other solid tumors that overexpress them. The ErbB family of receptor tyrosine kinases has quickly become one of the most important signaling pathways found in human breast cancer. Its dysregulation leads to a more aggressive cancer phenotype and its inhibition can act as a highly effective therapeutic strategy. Till date, there are a number of small molecule tyrosine kinase inhibitors with documented activity in ErbB2-overexpressing breast cancer that are being tested for improved efficacy in the treatment of breast cancer. The small molecule inhibitor with the most clinical data is a dual ErbB1/2 inhibitor, lapatinib with which multiple clinical trials are still on going. Table 3 represents ErbB Family and Their Small Molecule Inhibitors. Farnesyl transferase inhibitors Ras proteins belong to the small guanine triphosphate-binding protein (G protein) superfamily that is widely distributed in mammalian cells. G proteins regulate a wide variety of cellular functions, including gene expression in normal cell growth and differentiation (Ras), cytoskeletal reorganization and gene expression (Rho), vesicle trafficking (Rab and Sar1/Arf), nucleocytoplasmic transport (Run), and microtubule organization (Ran). Three classes...
of isoprenyltransferase enzymes have been identified in mammalian cells, including protein farnesyl transferase (FTase), type I protein geranylgeranylttransferase (GGTase-I), and type II protein geranylgeranylttransferase (GGTase-II). FTase catalyzes farnesylation of proteins in which X is methionine, serine, alanine, glutamine, or cysteine (e.g., Ras, Lamin B, Rho B) and GGTase-I catalyzes geranylgeranylation of proteins in which X is leucine, isoleucine, or phenylalanine (e.g., Rho, Rap, and Rac). GGTase-II catalyzes the geranylgeranylation of sequences CXC, CCX, or XXCC (e.g., Rab proteins). Both FTase and/or GGTase have been considered as potential therapeutic targets. At least three different strategies have been developed to target the aberrant Ras/G protein pathway in cancers: (i) blocking upstream activation of Ras at the cell surface receptors (such as ER, HER2/neu, EGFR, or other receptor tyrosine kinases); (ii) targeting Ras itself by inhibiting either Ras gene expression (e.g., antisense molecules) or interrupting protein processing (e.g., farnesyl transferase or geranylgeranyl transferase inhibitors); and (iii) inhibiting downstream effector pathways (e.g., Raf kinase or MEK inhibitors). Most preclinical and clinical studies to date have focused on inhibiting Ras/G protein prenylation with farnesyl transferase inhibitors (FTIs), which compete with the isoprenoid substrates for FTase, peptidomimetic inhibitors, which mimic the structure of CAAX portion of Ras and compete with Ras for FTase and bisubstrate analogs, which combine the properties of both. Two oral FTIs that have been most extensively studied in clinical trials ranging from phase I to phase III trials, including the nonpeptidomimetic agents tipifarnib (R115777, Zarnestra™; Johnson and Johnson Pharmaceutical Research and Development, U.S.A.) and lonafarnib (SCH66336, Sarasar, Schering-Plough, Inc., Kenilworth, New Jersey, U.S.A.). However, only tipifarnib has been evaluated in breast cancer, both as a single agent in combination with hormonal therapy and chemotherapy.

The epothilones:
The epothilones, a promising new class of microtubule-stabilizing compounds, have commanded attention recently, as their mechanisms of action are similar to those of the taxanes, yet they have the potential to evade the known mechanisms of taxane resistance. This feature of the epothilones makes them valuable agents for the treatment of patients with taxane-resistant disease, an increasingly large population of patients with recurrent breast cancer. Modifications of the structure of naturally occurring epothilones have yielded multiple biologically active analogues with varying activity and toxicity profiles. The three principal epothilone analogues under active development in breast cancer are ixabepilone (BMS-247550, azepothilone), patupilone (EPO906, epothilone B), and KOS-862 (epothilone D). The development of two other analogues, ZK-EPO and BMS-310705 (a water-soluble epothilone B analogue) has been put on hold. Ixabepilone, patupilone, and KOS-862 all have broad-spectrum antitumor activity in cell culture and xenograft models. Furthermore, unlike the taxanes, the epothilones are cytotoxic against multi-drug resistant cell lines and against cells containing tubulin mutations that result in taxane-resistance.

Nab-paclitaxel: Reducing toxicity using albumin-bound particles as the carrier for paclitaxel
The taxanes, paclitaxel and docetaxel, are some of the most effective chemotherapeutic agents, and have an important role in the treatment of breast cancer. Because taxanes are not soluble in aqueous solution, they require a vehicle to solubilize them in an injectable form. Polyoxymethylized castor oil (Cremophor EL; CrEL) and ethanol were used as vehicles for the first clinically available formulation of paclitaxel (solvent-based paclitaxel). Solvent-based paclitaxel was found to be associated with severe hypersensitivity reactions in reports of adverse drug reactions during phase-1 trials. Nonclinical and clinical evidence suggests that polyoxymethylated castor oil may contribute to these hypersensitivity reactions from solvent-based paclitaxel. The reformulation of paclitaxel with albumin circumvents solvent-associated toxicity and utilizes the natural carrier role of albumin in the human circulation. Paclitaxel is homogenized with albumin using 130-nanometer albumin-bound (nab) technology to produce a colloidal suspension for intravenous infusion (nab-paclitaxel). A nonclinical study of nab-paclitaxel and...
solvent-based paclitaxel compared mortality data at the 30 mg/kg/day doses of nab-paclitaxel and solvent-based paclitaxel. Combinations of nab-paclitaxel with chemotherapeutic agents and biologic agents have been examined in phase II trials.

Antiangiogenic agents in breast cancer:
Angiogenesis represents a complex mechanism of finely regulated mediators that act to promote new blood vessel growth and migration. In 1971, Folkman described the association between angiogenesis and the malignant potential of solid neoplasms, and proposed that without neovascularization, tumors would reach a maximum diameter of 2 to 3 mm (the maximum distance for the adequate diffusion of oxygen), and then enter a dormant state. With appropriate stimulus (e.g., hypoxia, metabolic stress, and inflammation) the balance is "tipped" in favor of angiogenesis, and the switch promoting new vessel growth and recruitment is activated. Hypoxia is the characteristic event, which leads to the expression of hypoxia induced factor-1α (HIF-1α), triggering a cascade of events that culminates in the transcription of mRNA and the resultant increased expression of VEGF. Upon binding to its receptors, VEGF activates crucial signaling pathways leading to cell proliferation, increased vasopermeability, inhibition of apoptosis, and ultimately angiogenesis. Hypoxia is not the only stimulus for VEGF expression, and increased transcription of VEGF has been associated with a variety oncogenes, including mutant ras, erbB-2/HER2, activated epidermal growth factor receptor (EGFR). Many solid tumors produce VEGF as means of promoting pathologic angiogenesis, and up-regulation of VEGF mRNA has been found in the vast majority of human malignancies, including breast cancer. Bevacizumab has been shown to effectively bind the soluble VEGF-A ligand, preventing binding to its receptors (Flt-1 and KDR/Flk-1), and essentially disrupting the initial signal in the angiogenic cascade. Many approaches are still under investigation, the most studied and successful to date involves the development of a monoclonal antibody directed against the VEGF-A isoform, the most predominant and active ligand in this pathway. Bevacizumab (Avastin, Genentech, San Francisco, CA) is currently the only FDA approved monoclonal antibody aimed at specifically inhibiting angiogenesis in solid tumors. While bevacizumab is currently only approved for use with bolus IFL (irinotecan, 5-FU and leucovorin) in first-line therapy for metastatic colorectal cancer, it has shown potential in early trials investigating its use in nonsmall lung cancer, renal cell carcinoma, and breast cancer.

Epigenetic regulation as a new target for breast cancer therapy:
Epigenetics is a process by which gene expression may be modulated without an alteration in the primary nucleotide sequence of a gene. Epigenetic regulation is critical in normal growth and development and provides a layer of transcriptional control of gene expression. Stability of DNA structure requires faithful replication of DNA, and alterations may lead to abnormal processes, such as autoimmune disease, genetic disorders, and cancer. A prominent epigenetic alteration is DNA-methylation in the promoter region of the gene that prevents the gene to be expressed. Epigenetic changes may be inherited or result from environmental exposures. Epigenetic changes can be implicated both in cancer initiation and progression. Because epigenetic changes may be reversible, they represent an active area for new drug investigation and are promising targets for cancer therapy.

DNA methylation:
In replicating DNA (i.e., in dividing cells), enzymes called DNA methyltransferases (DNMTs) add a methyl group to the cytosine ring to form methyl cytosine. This modification takes place only on cytosine that precedes a guanosine in the DNA sequence, called the CpG dinucleotide. Several small regions of DNA contain the expected number of CpG dinucleotides, the so-called CpG islands. CpG islands are generally present at the promoter region of most genes. CpG dinucleotides that are not in CpG islands are usually methylated, resulting in suppression of transcription. In contrast, most CpG dinucleotides in CpG islands in gene promoter regions are unmethylated and allow for active gene transcription. In cancer cells, CpG islands that are normally unmethylated may become methylated, resulting in silencing of important genes, such as inactivation of tumor suppressor genes. At the same time, CpG dinucleotides in other regions may become
unmethylated, leading to diminished transcriptional repression of normally silenced genes such as oncogenes. DNA methylation is mediated by several proteins. As noted, DNMTs add methyl groups to the cytosines in CpG dinucleotides. Three active DNMTs have been recognized in humans and are designated DNMT1, DNMT3a, and DNMT3b. Each DNMT may have a specific role in the methylation process, or may act in association with another methyltransferase. DNMTs are also responsible for the recruitment of histone deacetylases (HDACs) to the sites of gene promoters, and may bind to other proteins with a goal of maintaining a repressed transcriptional status. Several DNMT inhibitors are under investigation for cancer treatment. The identification of methylated genes is also under investigation. Changes in gene methylation or histone acetylation may serve as biomarkers of cancer risk, assist in cancer detection, provide molecular staging, or predict prognosis or response to treatment. Importantly, epigenetic changes represent an exciting target for therapy.

Tumor vaccines for breast cancer:
The goal of cancer vaccines and immunotherapies is to train the immune system to recognize cancer cells and destroy them. Immune responses play a dynamic role in the development of cancers, from immuno surveillance to immune escape, from in situ immune dysregulation to metastatic spread. The systematic identification and targeting of molecules involved in the immune response has led to a wide variety of potential immunotherapeutic targets for the treatment of breast cancer. To date, most vaccine strategies have focused on immune activation such as antigenic delivery, TLR activation by CpGs and adjuvant, and cytokine stimulation. However, the identification of immune regulatory pathways, such as B7-H1, B7-H4, CTLA-4, IDO, and regulatory T-cells has demonstrated that inhibition of immune regulation will be critical to establish effective anti-tumor immunity. The successful development of breast cancer vaccines will require combinatorial therapies that target both breast-cancer specific immune activation and inhibition of immune tolerance.

Antigen based vaccine
The ideal breast cancer vaccine would induce broadly reactive immunity to multiple types of breast cancer without causing clinically significant autoimmunity and, most important, be clinically effective. One approach to minimize autoimmunity and enhance specificity of vaccines is to target them to specific protein antigens that are over expressed on the tumor cells but that have limited distribution in normal tissue. Many breast cancer tumor antigens are also expressed on tumor cells in other epithelial-derived cancers, such as ovarian cancer and colon cancer, and have been targeted in early-phase clinical trials in breast cancer and other solid tumors. In addition to MUC-1, HER2/neu, and telomerase, target antigens include CEA, cyp1B1, surviving and others.

Cellular-based vaccines:
Vaccines based on whole autologous or allogeneic tumor cells have been combined with strong adjuvants or cytokines, since tumor cells themselves generally stimulate poor antigen presentation. Both autologous tumor cells and allogeneic cell lines have been used in clinical trials in breast cancer, with isolated clinical responses reported. Whole tumor cells have also been fused with dendritic cells. In murine models, GM-CSF was the most potent cytokine adjuvant for vaccination and GM-CSF-secreting autologous and allogeneic vaccines are currently being evaluated in clinical trials in breast cancer.

Targeting chemokines for therapy:
Chemokines are members of a superfamily of chemotactic cytokines initially characterized because of their association with inflammatory responses, by stimulation of leukocyte chemotaxis during inflammation. However, it is now known that they also play roles in homeostasis, cell proliferation, haematopoiesis, viral/ cell interactions, angiogenesis, neovascularization and cancer metastasis. Manipulation of the tumor microenvironment by treatment with chemokines can be used to recruit either immature dendritic cells for the initiation of anti-tumor responses or effector cells for cytotoxic responses. Intratumoral delivery of CCL21 using pox virus vaccine into established tumors derived from murine colon cancer line, CT26 results in enhanced infiltration of CD4 T cells which correlated with inhibition of tumor growth.
Various murine tumors have been engineered to over express chemokines in order to stimulate increased immune cell infiltration for generation of anti-tumor response. Furthermore, non-immunogenic murine breast carcinoma is rejected after transducing cells with CCL19. The rejection of tumor was mediated by activated NK and CD4+ cells123. Adenoviral delivery of the CCL16 is able to inhibit growth of mammary tumors and prevent metastatic growth. Similarly, intratumoral injections of adenoviral vectors expressing CCL17, CCL22 or CCL27 suppress growth and attracted activated T cells124. In nude mice models, labeled recombinant CXCL4 injected intravenously or intra-arterially preferentially target the endothelium of the breast cancer, induce neovasculature, which suggests that CXCL4 could have some interesting applications in anti-tumoral strategies125.

Since many breast cancers are initiated in the TEB/TDLU1, it has been proposed that the more TEBs there are in the developing mammary gland at the time the gland is exposed to an initiating event- for example to a carcinogen or radiation - the higher the cancer risk129. The evidence to support this idea originates from observations obtained in animal models indicating that exposures early in life to hormones, endocrine disruptors or dietary compounds that alter hormonal environment are associated with altered susceptibility to mammary tumorigenesis and changes in the number of TEBs130,138. Thus, the link between increased number of TEBs and higher cancer risk, and low number of TEBs and reduced breast cancer risk has been considered to be strong. However, this concept is challenged by findings indicating that some early life dietary modifications that reduce the number of TEBs in fact increase the susceptibility to mammary tumorigenesis. Further, some dietary manipulations which reduce TEB numbers do not affect the risk of developing mammary tumors139-149. These observations suggest that the number of TEBs in the developing mammary gland is not always predictive of later cancer risk. The reason for these inconsistencies remains to be resolved.

Dietary exposures during early development epigenetically reprogram the expression of genes within the mammary gland, resulting the TEBs to exhibit altered susceptibility to malignant transformation. The genes whose expression is altered may be those that normally protect the cells from malignant transformation; i.e., prevent DNA adduct formation (antioxidant genes or genes that regulate cell metabolism), repair DNA (tumor suppressor genes), induce apoptosis, or inhibit cell proliferation.[fig 5]

\textbf{Fig. 4} Model of regulation of CXCL8 gene in breast cancer cells
CXCL8 gene expression is higher in ER-negative breast cancer cells compared to ER-positive breast cancer cells. This difference of expression arises from a higher transcriptional activity of CXCL8 gene in ER-negative breast cancer cells involving the synergistic activation of the gene by NF-κB and AP-1 pathways and at a lower degree by C/EBP factors. NF-κB and AP-1 transcription factors are present at higher levels in ER-negative breast cancer cells.

\textbf{Nutritional Modulation of Terminal End Buds:}
In a human breast, called terminal ductal lobular unit 1 (TDLU1), appear to be the sites of breast cancer initiation in most women126. The reason why tumors arise from TEB/TDLU1 is not entirely clear, but might relate to high cell proliferation in this structure27 that is associated with increased levels of DNA adduct formation and reduced capacity to repair DNA damage128.
CONCLUSION
Considerable progress has been made in the understanding of the molecular basis of breast cancer. Many endocrine agents proved to be beneficial as adjuvants and in advanced hormone-responsive breast cancer. These include selective estrogen receptor modulators, third-generation aromatase inhibitors, progestins, and LHRH analogs. Despite this, cytotoxic chemotherapy is still the mainstay of treatment especially in the metastatic setting. Although still under trial, novel targeted drug therapies including; anti-epidermal growth factor receptor strategies, farnesyl transferase inhibitors, epothiolones, antiangiogenic agents, epigenic regulation and tumor vaccines, Nutritional Modulation of Terminal End Buds, Targeting chemokines for therapy may give a new horizon for future management of breast cancer.

REFERENCES

49. Winer E, Cobleigh M, Dickler M. Phase II multicenter study to evaluate the efficacy and safety of Tarceva (erlotinib, OSI-774) in women with previously treated locally advanced or metastatic breast cancer. Breast Cancer Res Treat 2002;76:A445.

