INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Available online at www.ijrpc.com

Review Article

A STUDY ON BETA BLOCKERS - A BRIEF REVIEW

TV. Namratha^{*}, KC. Chaluvaraju and AM. Anushree

Department of Pharmaceutical Chemistry, Government College of Pharmacy, Bengaluru-560 027, Karnataka, India.

ABSTRACT

Beta blockers are agents or drugs which competitively inhibit the action of catecholamines at the beta adrenergic receptors, which are mainly used to treat variety of clinical conditions like angina, hypertension, asthma, COPD and arrhythmias. These drugs are also useful in several other therapeutic situations including shock, premature labor and opioid withdrawal, and as adjuncts to general anesthetics. These drugs produce their effect by interacting with the beta adrenergic receptors. In the present communication, an effort has been made to compile beta adrenergic receptors and the chemistry, discovery and development, classification and therapeutic applications of beta blockers.

Keywords: Beta blockers, adrenergic receptors, catecholamines and aryloxypropanolamines.

1. INTRODUCTION

1.1 Adrenergic receptors

The ability of a molecule to selectively antagonize adrenergic agonize or receptor made great advances in pharmacotherapeutics. The discovery of adrenergic receptors lead to major development of newer adrenergic antagonist.1 agonists as well as Adrenergic receptors are 7transmembrane spanning receptors which mediate both central and peripheral actions of the adrenergic neurotransmitters. Adrenergic receptors are found in nearly all peripheral tissues and on many neurons within the central nervous system.² They play an important role in the control of blood pressure, myocardial contractile rate and force, airway reactivity, and a variety of metabolic and central nervous system functions. In 1948, Raymond P. Ahlquist classified the adrenergic receptors into two major

the adrenergic receptors into two major types i.e. α and β , based on their pharmacological characteristics such as rank order of potency of agonists.⁴ Subsequently, both α and β types were subdivided into α_1 , α_2 , β_1 , β_2 and β_3 subtypes respectively. Further, based on pharmacological and molecular evidences alpha receptor subtypes were classified into α_{1A} , α_{1B} , α_{1D} . Beta blockers were first developed by Sir James Black in 1962. The structures of these receptors have been studied by xray crystallography.⁵ In the current article beta blockers are majorly focused with respect to their location, functions mediated, discovery and development, SAR, classification, structures and therapeutic applications.

1.2 Locations and agonistic action of beta adrenergic receptors⁶ The following are the various beta adrenergic receptors found in different physiological locations and their actions mediated by their stimulation with beta adrenergic agonists. (Table 1)

2. DISCOVERY AND DEVELOPMENT OF BETA ADRENERGIC ANTAGONISTS One of the beta adrenergic agonist drugs, Isoprenaline (Fig. 1), was considered as a lead molecule. It is a beta receptor agonist but has no action on alpha receptors. This lead molecule was studied in depth and suitable structural modifications required for beta adrenergic antagonistic activity were implemented.³

The first such modifications carried out included was the replacement of the phenolic hydroxyl groups in isoprenaline with chloro substituents gave dichloroisoprenaline (Fig. 2), which is a partial agonist.

This promising molecule dichloroisoprenaline gave an insight in next stage of development to convert the beta adrenergic agonistic activity into activity. antagonistic The general methodology to do so was to introduce another aromatic ring into the existing molecule. This resulted in a drastic change in hydrophobic interaction of the molecule with the receptor and also changed the induced fit between the ligand and the binding site. This new fit resulted in binding of ligand to the receptor's binding site but without the activation of the same.

Considering the above fact, the chloro groups were replaced with a benzene ring, to form a rigid naphthalene ring system. This gave pronethalol (Fig. 3), the first beta blocker to be used clinically treat angina, arrhythmia and to hypertension.⁵ Though, it exhibited great therapeutic activity, it was soon withdrawn due to its carcinogenic effects.

The further development was a result of the introduction of side chains between naphthalene ring and the the ethanolamine. The discovery of propranolol (Fig. 4) was in fact a result of an accident during the synthesis for which α -naphthol was used in the reaction mixture instead of the β naphthol and a drug having structure with side chain at C1 of the naphthalene ring rather than the C2 was obtained. Propranolol is a pure antagonist and this molecule is considered to be a bench mark in evaluation of all other beta blockers.

CLASSIFICATION OF BETA 3. **BLOCKERS**

3.1 Beta blocking agents are classified into 3 classes based on selectivity and action:

- 1 First generation-Non selective in nature and cause no vasodilation Ex: Propranolol, Nadolol, Pindolol
- 2 Second generation cardioselective in nature
 - Ex: Acebutolol, atenolol
- 3 Third generation-Non selective agents which cause vasodilation Ex: Primidolol, Epanolol

3.2 Based on their chemical nucleus Beta blockers can be classified into:

- 1. **Arylethanolamines** Ex: pronetalol, sotalol, labetalol, brefonalol, Bufuralol
- Aryloxypropanolamines 2. Ex: Propranolol, esmolol, metoprolol, acebutalol, atenolol

3.3 FDA classes of beta blockers for use in pregnant women 7,8

A. Category A

Adequate and well-controlled studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

No β-blockers is completely safe for using during pregnancy.

B. Category B

Animal reproduction studies have failed to demonstrate a risk to the fetus and there are no adequate and well-controlled studies in pregnant women.

Eg. Pindalol, acebutalol, sotalol

C. Category C

Animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks.

Eg. Labetalol, Bisoprolol, Timolol, Metoprolol

D. Category D

There is positive evidence of human fetal risk based on adverse reaction data from investigational or marketing experience or studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks.

Eg. Atenolol

STRUCTURE ACTIVITY 4. **RELATIONSHIP OF** ARYLOXYPROPANOLAMINES

Presently, aryloxypropanolamines are the most commonly used beta adrenergic blockers. Though the beta blockers are marketed in the racemic form, typically the activity lies only in one of its isomeric form. In arylethanolamines, the activity was

found to reside in the (R) form, while in case of aryloxypropanolamines, it resides in the (S) form.⁹

Following are the necessary structural requirements for their optimum activity: ⁴

- ✓ Presence of branched N-alkyl functional moieties. This fits into the hydrophobic pockets, both branching and extension of this alkyl side chain is essential.
- ✓ Presence of hydroxyl group on the side chain is essential for the hydrogen bonding with receptors.
- Presence of amino group is essential and it should be secondary in nature, and it is required for the ionic bonding interaction.
- Presence of oxymethylene bridge is also essential for the drug to bind to the receptor.

However, the following changes are feasible:

- ✓ The aromatic ring system can be heterocyclic in nature.
- ✓ Aryloxy substitution can be at C₂ which gives more potent compounds than those substituted at C₁
- Variation in lipophilicity can be achieved by introducing suitable substituents.

The following modifications were found to be detrimental and lead to loss of activity:

- ✓ Introduction of substituent on the propyl side chain.
- ✓ Replacement of the ethereal oxygen with S, CH₂ or N-CH₃.
- 5. MECHANISM OF ACTION OF BETA BLOCKERS⁶

Beta receptors are G protein coupled receptors. Activation of these

receptors by the neurotransmitters, results in the production of cAMP by adenyl cyclase. cAMP is a secondary messenger molecule which activates the Protein Kinase A (PKA). The action of PKA is to increase the calcium release which is responsible for the physiological action. Beta blockers act by binding to the beta adrenergic receptors and blocking the action of neurotransmitters. (Fig. 5)

6. BETA ADRENERGIC BLOCKERS¹⁰⁻²⁵

Various beta adrenergic blockers, their structures, molecular formula, molar mass and therapeutic uses are discussed here.

The following are the most widely used beta adrenergic blockers: (Table 2).

7. CONCLUSION

Beta blockers constitute an important class of drugs in the clinical treatment of various disorders like hypertension, angina pectoris, asthma, glaucoma and arrhythmias. Various physical and chemical parameters of beta adrenergic antagonists such as the specificity, solubility, permeability and distribution of the molecule can be modified in order to obtain a drug with preferred characteristics. Study of the nature and type of receptor at the target tissue, and also by analyzing the structure activity relationship helps in obtaining molecules with optimum biological and physiochemical properties.

TABLES

Table 1: locations of beta adrenergic receptors and actions of beta adrenergic agonists

TYPE OF RECEPTOR	LOCATION	PHYSIOLOGICAL EFFECT
β1	Myocardium	Increase in contractility and heart rate
	Blood vessel	Coronary vasodilation
	Kidney	Increase in renin release
	Fat tissue	Stimulation of lipolysis
β_2	Myocardium	Increase in contractility and heart rate
	Smooth muscles in bronchi	Bronchodilation
	Smooth muscles in blood vessels	Vasodilation
	Smooth muscles in genitourinary tract	Relaxation
	Smooth muscles in large intestine	Relaxation
	Fat tissue	Stimulation of lipolysis
	Liver	Glycogenolysis and glyconeogenesis
	Pancreas	Stimulation of insulin release
	Sympathetic nerve terminals	Stimulation of noradrenaline release
	Skeletal muscles	Less fatigue(due to aerobic respiration) Tremors
	Blood lipids	Low triglycerides and high HDL
	Eye	Increase in intraocular pressure
β ₃	Fat tissue	Stimulation of lipolysis and thermogenesis
	Myocardium	Cardiodepression
	Blood vessels	Vasodilation
	Genitourinary smooth muscles	Muscle relaxation

 Table 2: List of beta blockers and their properties and uses

SI. No.	Compound Name	Structure	Molecular Formula	Molecular Mass	Therapeutic uses
1	Acebutalol	O O O O CH ₃ CH ₃	C ₁₈ H ₂₈ N ₂ O ₄	336.426 g/mol	Hypertension and arrhythmia
2	Adaprolol	OH O O O O O O O O O O O O O O O O O O	CH ₃ C ₂₆ H ₃₉ NO ₄	429.59 g/mol	Glaucoma
3	Adimolol	HO NH CH ₃ O CH ₃ N	NH C ₂₅ H ₂₉ N ₃ O ₃	419.52 g/mol	Antihypertensive
4	Alfurolol	O O O O O O O O H C H ₃ C H ₃ C H ₃	C ₁₅ H ₂₁ NO ₄	279.33 g/mol	-

5	Alprenolol	OH OH CH ₃ CH ₂ OH CH ₃	C ₁₅ H ₂₃ NO ₂	249.34 g/mol	Antihypertensive , in edema, ventricular tachycardia and atrial fibrillation
6	Alprenoxime	O CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	C ₁₅ H ₂₂ N ₂ O ₂	262.35 g/mol	It is a prodrug to alprenolol.Antihy pertensive, in edema, ventricular tachycardia and atrial fibrillation
7	Amosulalol	O CH ₃ O NH OH CH ₃ O NH ₂	C ₁₈ H ₂₄ N ₂ O ₅ S	380.45 g/mol	Antihypertensive prior to operations in patients with pheochromocyto ma
8	Ancarolol	HO HO HO HO HO CH ₃ CH ₃ CH ₃ CH ₃	C ₁₈ H ₂₄ N ₂ O ₄	332.39 g/mol	Antihypertensive
9	Arnolol	H ₃ C ₀ H ₃ C _N	3 H ₂ ^{C₁₄H₂₃NO₃}	253.34 g/mol	-
10	Arotinolol	H ₂ N O	СH ₃ СH ₃ С ₁₅ H ₂₁ N ₃ O ₂ S ₃	371.54 g/mol	Treatment of high blood pressure and es sential tremor.

11	Atenolol	$H_{3}C$ $H_{1}CH_{3}$ $H_{2}N$ $H_{2}N$ $H_{2}N$ $H_{2}N$ $H_{3}C$ H_{3}	C ₁₄ H ₂₂ N ₂ O ₃	266.336 g/mol	Used primarily in cardiovascular diseases. Treatment for hypertension
12	Befunolol	CH ₃ O O O O O O O O O O O O O O O O O O O	8 C ₁₆ H ₂₁ NO ₄	291.342 g/mol	Management of open-angle glaucoma.
13	Betaxolol		CH ₃ C ₁₈ H ₂₉ NO ₃ H ₃	307.428 g/mol	Treatment of hypertension and glaucoma
14	Bevantolol	CH ₃ O O CH ₃ O O CH ₃	CH ₃ C ₂₀ H ₂₇ NO ₄	345.43 g/mol	Treatment of angina and hypertension
15	Bisoprolol	CH ₃ H ₃ C O O O O O O O O O O O O O O O O O O O	CH ₃ C ₁₈ H ₃₁ NO ₄ H ₃	325.443 g/mol	High blood pressure, chest pain from not enough blood flow to the heart, and heart failure
16	Bopindolol	$H_{3}C$ CH_{3} O	C ₂₃ H ₂₈ N ₂ O ₃	380.48 g/mol	Angina pectoris, Hypertension
17	Bornaprolol	OH OH OH CH ₃	C ₁₉ H ₂₉ NO ₂	303.45 g/mo L	Antihypertensive

18	Brefonalol	H H O H O H O H	$C_{22}H_{28}N_2O_2$	352.48 g/mo I	-
19	Bucindolol	H H ₃ C CH ₃ OH	C ₂₂ H ₂₅ N ₃ O ₂	363.45 g/mol	-
20	Bucumolol	O O O O O O O H C H ₃ C H ₃ C H ₃	C ₁₇ H ₂₃ NO4	305.37 g/mo I	Antihypertensive
21	Bufetolol	OH OH HN CH ₃ H ₃ C CH ₃	C ₁₈ H ₂₉ NO4	323.43 g/mo I	Antiarrhythmic
22	Bufuralol	H ₃ C CH ₃ OH CH ₃	C ₁₆ H ₂₃ NO ₂	261.37 g/mo I	Peripheral vasodilating, antianginal and antihypertensive
23	Bunitrolol	OH OH H ₃ C CH ₃	C ₁₄ H ₂₀ N ₂ O ₂	248.33 g/mo I	Antianginal and antiarrhythmic

24	Bupicomide	H ₃ C	C ₁₀ H ₁₄ N ₂ O	178.24 g/mo I	Antihypertensive
25	Bupranolol	CI OH NH CH ₃ H ₃ C CH ₃	C ₁₄ H ₂₂ CINO 2	271.78298 g/mol	Treat hypertensi on and tachycar dia
26	Butaxamine	H_3C CH_3 CH_3 H_3C CH_3	C ₁₅ H ₂₅ NO ₃	267.364 g/mol	-
27	Butidrine	OH NH CH ₃ CH ₃	C ₁₆ H ₂₅ NO	247.38 g/mo I	Local anesthetic
28	Butofilolol	F CH ₃ H ₃ C CH ₃ H ₃ C CH ₃ CH ₃ CH ₃ CH ₃	C ₁₇ H ₂₆ FNO ₃	311.392 g/mol	Treatment of essential hypertension
29	Capsinolol	O NH O H ₃ C CH ₃ HN CH ₃ HO H ₃ C O	8 C ₂₃ H ₄₀ N ₂ O ₄	408.58 g/mol	In tachycardia
30	Carpindolol	H ₃ C H ₃ C H ₃ C	СН ₃ Сн₃Ӊ ₂₈ №2О4	348.44 g/mol	-

					-
31	Carteolol	HN HO HO HO HO HN CH ₃ H ₃ C CH ₃	C ₁₆ H ₂₄ N ₂ O ₃	292.373 g/mol	Glaucoma (open -angle type) or other eye diseases (such as ocular hypertension), antihypertensive, antiarrhythmic, antianginal.
32	Carvedilol	HN OH O NH O	C ₂₄ H ₂₆ N ₂ O ₄	406.474 g/mol	Used for treating mild to severe congestiv e heart failure (CHF), lef t ventricular dysfunction (LV D) following heart attack and for treating high blood pressure.
33	Celiprolol	H ₃ C NH H ₃ C OH H ₃ C	CH ₃ CH ₃ C ₂₀ H ₃₃ N ₃ O ₄	379.49 g/mol	Treatment of high blood pressure and treatment of vascular Ehlers– Danlos syndrome.
34	Cetamolol	HN O OH HN CH_3 HN O H HN CH_3 H_3C CH_3	C ₁₆ H ₂₆ N ₂ O ₄	310.39 g/mo I	-
35	Cicloprolol		CH ₃ C ₁₈ H ₂₉ NO ₄ H ₃	323.43 g/mo I	In tachycardia
36	Cinamolol	H ₃ C ^O O OH OH CH ₃ C	H ₃ ^{C₁₆H₂₃NO₄}	293.36 g/mol	-

Namratha et al.

37	Cloranolol	CI CI CI CI CI CI CI CI CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	C ₁₃ H ₁₉ Cl ₂ N O ₂	292.20 g/mo I	Antiarrhythmic
38	Cyanopindolol	HO HN HN HN HO CH ₃ CH ₃ CH ₃	$C_{16}H_{21}N_{3}O_{2}$	287.36 g/mol	-
39	Dalbraminol	OH NH NH NH	CH ₃ N C ₁₇ H ₂₆ N ₄ O ₂ CH ₃	318.41 g/mol	-
40	Desacetylmetipr anolol	$HO \qquad CH_3 \qquad CH_3 \qquad HO \qquad H_3C \qquad CH_3 \qquad CH_3$	C ₁₅ H ₂₅ NO ₃	267.37 g⋅mo I ^{−1}	Active metabolite of metipronolol
41	Dichloroisopren aline	CI CI CI CI CI CH ₃	C ₁₁ H ₁₅ Cl ₂ N O	248.15 g/mol	-
42	Dihydroalprenol ol	OH NH CH ₃ CH ₃	C ₁₅ H ₂₅ NO ₂	251.37 g/mo I	Alprenolol derivative
43	Diprafenone	O O H H ₃ C	CHG23H31NO3 CH3	369.51 g/mo I	New class I C antiarrhythmic agent

44	Draquinolol	CH ₃ O H ₃ C H ₃ C	CH ₃ CH ₃ C ₂₄ H ₃₀ N ₂ O ₄	410.51 g/mol	-
45	Ecastolol	CH ₃ HN O O O O HN O O O H	C ₂₆ H ₃₃ N ₃ O ₆ _CH ₃	483.56 g/mol	-
46	Epanolol		OH C ₂₀ H ₂₃ N ₃ O ₄	369.41432 g/mol	New antianginal
47	Ericolol	O O H O H H ₃ C C H ₃ C H ₃	C ₁₈ H ₂₄ CINO 3	337.84 g/mol	Antihypertensive , antianginal and antiarrhythmic
48	Ersentilide		N C ₂₁ H ₂₆ N ₄ O ₅ S	446.52 g/mo I	Antifibrillatory
49	Esmolol	H ₃ C O O O O O O O O O O O O O O O O O O O	^I 3 C ₁₆ H ₂₅ NO₄ `CH ₃	295.374 g/mol	Class II antiarrhythmic

56	Hydroxytertatolo I	OH OH OH	C ₁₆ H ₂₅ NO ₃ S	311.44 g/mol	-
57	ICI-118,551	H ₃ C O OH OH	C ₁₇ H ₂₇ NO ₂	277.402 g/mol	_
58	Idropranolol	HO NH CH ₃	6 C ₁₆ H ₂₃ NO ₂	261.36 g/mol	-
59	Indenolol	OH OH NH CH ₃	C ₁₅ H ₂₁ NO ₂	247.34 g/mo I	Antiarrhythmic
60	Indopanolol	CI NH H ₃ C	C ₂₀ H ₂₃ CIN ₂	374.86 g/mol	-
61	lodocyanopindol ol	N HN HN HN HN HN HN HN HN HN CH3 H3C CH3	C ₁₆ H ₂₀ IN ₃ O ₂	413.25 g/mol	Used in mapping the distribution of beta adrenoreceptors in the body
62	lodopindolol	HN O NH CH ₃ CH ₃	C ₁₄ H ₁₉ IN ₂ O ₂	374.22 g/mo I	Used in mapping the distribution of beta adrenoreceptors in the body

63	Iprocrolol	HO O O O O O O H O H C H ₃ C H ₃ C C H ₃ C C H ₃ C O O O O O O O O O O O O O O O O O O O	³ C ₁₈ H ₂₃ NO ₆	349.38 g/mol	Antiarrhythmic
64	Isamoltane	$\dot{C}H_3$	C ₁₆ H ₂₂ N ₂ O ₂	274.357 g/mol	Used in scientific research. It acts as an antagonist at the β - adrenergic, 5- HT _{1A} , and 5- HT _{1B} receptors.
65	Isoxaprolol	H_3C	C ₁₉ H ₂₆ N ₂ O ₃	330.42 g/mol	Antiarrhythmic and antihypertensive
66	Labetalol	CH ₃ NH CH ₃	0H 	328.406 g/mol	Antihypertensive
67	Landiolol	H ₃ C O O O O O O O O O O O O O O O O O O O	0 N C25H39N3O8	509.59 g/mol	Antiarrhythmic agent
68	Levobunolol	OH CH ₃ OH CH ₃	C ₁₇ H ₂₅ NO ₃	291.385 g/mol	Topically to manage glauco ma
69	Medroxalol	OHO OHO CH ₃ OHO OHO OHO OHO OHO OHO OHO OHO OHO OHO	C ₂₀ H ₂₄ N ₂ O ₅ ' ' '2 H	372.415 g/mol	Vasodilator

			1		
70	Mepindolol	HO HN HN CH ₃ CH ₃	C ₁₅ H ₂₂ N ₂ O ₂	262.35 g∙mo I ⁻¹	To treat glaucoma
71	Metipranolol	$\begin{array}{c} O \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ CH_{3} \\ O \\ CH_{3} \\ O \\ OH \end{array}$	C ₁₇ H ₂₇ NO ₄ 3	309.401 g/mol	To treat glaucoma
72	Metoprolol	H ₃ C ^O O OH	℃ ₁₅ H ₂₅ NO ₃	267.37 g∙mo I ^{−1}	To treat high blood pressure, chest pain due to poor blood flow to the heart, and arrhythmia. Trea tment of post myocardial infarction patients and also in migraine.
73	Moprolol	H ₃ C ^{-O} HO ^{CH₃}	C ₁₃ H ₂₁ NO ₃	239.32 g∙mo I ^{−1}	To treat hypertensio n, anxiety, and glaucoma
74	Nadolol	HO HO OH OH OH H ₃ C CH H ₃ C	C ₁₇ H ₂₇ NO4	309.401 g/mol	Treatment of high blood pressure and ch est pain. Additionally, in the treatment of atrial fibrillation, migrai ne headaches, and complications of cirrhosis.
75	Nebivolol	F O O H O H O H	F C ₂₂ H ₂₅ F ₂ NO 4	405.435 g/mol	Treatment of hypertension and left ventricular failure.

76	Nifenalol	OH NH CH ₃ CH ₃	$C_{11}H_{16}N_2O_3$	224.26 g⋅mo Г ⁻¹	Treatment of angina
77	Nipradilol		CH ₃ C ₁₅ H ₂₂ N ₂ O ₆ H ₃	326.35 g∙mo I ^{−1}	In treatment of glaucoma
78	Oxprenolol	OH OH NH CH ₂ CH ₂ CH ₃	C ₁₅ H ₂₃ NO ₃	265.348	Treatment of angina pectoris, abnormal heart r hythms and high blood pressure.
79	Pacrinolol	OH NH CH ₃	CH ₃ C ₂₃ H ₂₈ N ₂ O₄	396.49 g∙mo I ^{−1}	Long acting antihypertensive.
80	Pafenolol	CH ₃ O H ₃ C NH NH C	CH ₃ C ₁₈ H ₃₁ N ₃ O ₃ H ₃	337.46 g∙mo I ^{−1}	Antihypertensive
81	Pamatolol	H ₃ C ₀ NH CH ₃	C ₁₆ H ₂₆ N ₂ O ₄	310.39 g⋅mo I ^{−1}	Antihypertensive drug
82	Pargolol	HC O O O H O O H C H ₃ C	C ₁₆ H ₂₃ NO ₃	277.36 g⋅mo I ^{−1}	-
83	Penbutolol	OH OH NH CH ₃ H ₃ C CH ₃	C ₁₈ H ₂₉ NO ₂	291.428 g/mol	Treatment of high blood pressure

Namratha et al.

84	Pindobind	HN OH NH CH ₃ O H ₃ C NH CH ₃	Br C ₂₃ H ₃₄ BrN ₃ O ₃	480.45 g∙mo I ^{−1}	CNS depressant drug in animals
85	Pindolol	HN O NH CH ₃ CH ₃	C ₁₄ H ₂₀ N ₂ O ₂	248.321 g/mol	Treatment of hypertension and angina pectoris
86	Practolol	H ₃ C NH OH C	CH ₃ C ₁₄ H ₂₂ N ₂ O ₃ H ₃	266.336 g/mol	Emergency treatment of cardiac arrhythmias. Practolol is no longer used as it is highly toxic
87	Primidolol	CH ₃ OH NH ON H	CH ₃ C ₁₇ H ₂₃ N ₃ O ₄	333.39 g⋅mo I ^{−1}	Antihypertensive
88	Procinolol	OH OH CH ₃	C ₁₅ H ₂₃ NO ₂	249.35 g∙mo I ^{−1}	Antiarrhythmic
89	Pronethalol	OH NH CH ₃	C ₁₅ H ₁₉ NO	229.32 g/mol	Never used clinically due to carcinogenicit y
90	Propranolol	HO O NH CH ₃ CH ₃	C ₁₆ H ₂₁ NO ₂	259.34 g/mol	To treat hypertensio n, arrhythmia, thyro toxicosis, capillar y hemangiomas, p erformance anxiety, essential tremors, to prevent migraine headaches, further heart problems in those with angina or previous heart attacks

91	Ridazolol	CI OH NH NH	N NH C15H18Cl2N4 O3 CI	373.23 g∙mo I ^{−1}	-
92	Ronactolol	H ₃ C NH-	H ₃ C NH C ₂₀ H ₂₆ N ₂ O ₄ OH	≻——CH ₃ I 358.44 g·mo I ^{−1}	-
93	Soquinolol	O N O O O O O H C H ₃ C H ₃ C H ₃	C ₁₇ H ₂₆ N ₂ O ₃	306.41 g⋅mo I ^{−1}	-
94	Sotalol	H ₃ C 0 H ₃ C // NH CH ₃ CH ₃	C ₁₂ H ₂₀ N ₂ O ₃ S	272.3624 g/mol	Class III antiarrhythmic drug
95	Spirendolol	O H ₃ C CH ₃ HO CH ₃	C ₂₁ H ₃₁ NO ₃	345.48 g∙mo I ^{−1}	In control of essential tremors
96	SR 59230A	H ₃ C OH NH	C ₂₁ H ₂₇ NO ₂	325.45 g∙mo I ^{−1}	-

		(tн.		
97	Sulfinalol	H ₃ C NH HO CH ₃	C ₂₀ H ₂₇ NO ₄ S	377.50 g⋅mo I ^{−1}	Antihypertensive
98	Talinolol	OH H ₃ C NH NH C	CH ₃ H ₃ C ₂₀ H ₃₃ N ₃ O ₃	363.50 g∙mo I ^{−1}	-
99	Tazolol	N NH CH ₃ OH	$C_9H_{16}N_2O_2S$	216.30 g⋅mo I ^{−1}	Treatment of heart disease.
100	Tertatolol	HO H3C CH3 CH3 CH3 CH3	C ₁₆ H ₂₅ NO ₂ S	295.44 g/mol	Antihypertensive
101	Tienoxolol [OH NH CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	8 C ₂₁ H ₂₈ N ₂ O ₅ S	420.52 g⋅mo I ^{−1}	Diuretic
102	Tilisolol	H ₃ C O OH CH ₃ O H ₃ C CH ₃ O H ₃ C CH ₃	C ₁₇ H ₂₄ N ₂ O ₃	304.38 g/mol	Vasodilator
103	Timolol	O N N S N H ₃ C C H ₃	C ₁₃ H ₂₄ N ₄ O ₃ S	316.421 g/mol	Antihypertensive ,treatment of chest pain due to insufficient blood flow to the heart, also used to prevent further complications after a heart attack, and migraines prevention.

104	Tiprenolol	OH OH CH ₃ CH ₃	C ₁₃ H ₂₁ NO ₂ S	255.38 g∙mo I ^{−1}	_
105	Tolamolol	H ₃ C O NH O	NH ₂ C ₁₉ H ₂₄ N ₂ O ₄	344.41 g·mo I ^{−1}	-
106	Toliprolol	H ₃ C O NH CH ₃ CH ₃	C ₁₃ H ₂₁ NO ₂	223.32 g∙mo I ^{−1}	-
107	Xibenolol	H ₃ C OH OH CH ₃ H ₃ C O H CH ₃ H ₃ C CH ₃	C ₁₅ H ₂₅ NO ₂	251.36 g/mol	-
108	Xipranolol	H_3C CH_3 OH NH CH_3 H_3C CH_3 CH_3 CH_3 CH_3	C ₂₃ H ₃₃ NO ₂	355.51 g/mol	Antiarrythmic

Namratha et al.

8. REFERENCES

- Williams, David A and Thomas L. Lemke. Foye's Principles of Medicinal Chemistry. Philadelphia: Lippincott Williams & Wilkins. 2002;6th edition,410-413.
- http://www.guidetopharmacology.org/ GRAC/FamilyIntroductionForward?fa milyId=4
- Goodman L, Gilman A, Brunton L, Lazo J and Parker K. Goodman & Gilman's the pharmacological basis of therapeutics. New York: McGraw-Hill. 2006;12th edition,310-330.
- Ashutosh Kar. Medicinal chemistry. New Delhi: New age intenational (P) Limited Publishers, 2007;Revised and expanded 4th edition, 391-399.
- 5. Patrick and Graham L. An Introduction to Medicinal Chemistry, oxford: Oxford University Press, 2009, 6th edition, 667-670.
- Malcolm John Cruickshank. The Modern Role of Beta-Blockers in Cardiovascular Medicine,Connecticut: People's Medical Publishing House. 2011;1-3.
- https://en.wikipedia.org/wiki/Discovery _and_development_of_betablockers#Structureactivity_relationship_(SAR)
- 8. https://www.drugs.com/pregnancycategories.html
- Jozwiak Krzysztof, Lough WJ and Wainer Irwing W. Drug Stereochemistry: Analytical Methods and Pharmacology, CRC press. 2011;3rd edition, 213.
- Wilson, Charles O, Ole Gisvold, John H Block and John Beale M. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry. Philadelphia: Lippincott Williams & Wilkins. 2004;12th edition,528.
- 11. Indra Reddy K. Ocular Therapeutics and Drug Delivery: A multidisciplinary approach, Pennsylvania: Technomic publishing company Inc. 1995;372.
- 12. Ganten Detlev and Mulrow Patrick J. Pharmacology of Antihypertensive

Therapeutics, Springer Science & Business Media. 2012;179

- 13. Morton IK and Hall JM. Concise Dictionary of Pharmacological Agents: Properties and Synonyms, Springer Science & Business Media. 2012;153.
- 14. Cruickshank JM and Prichard BNC. Beta-blockers in clinical practice, Churchill Livingstone. 1994;1068.
- Elks J. The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies, Springer Science & Business Media. 2014;203.
- 16. Milne GWA. Drugs: Synonyms and Properties: Synonyms and Properties, New York: Routledge. 2017;1388.
- Milne GWA, Zeman EJ and Ashgate. Handbook of Cardiovascular Agents: An International Guide to 1900 Drugs in Current Use, New York: Routledge. 2017;165.
- 18. Manuchair Ebadi. CRC Desk Reference of Clinical Pharmacology, Florida: CRC Press. 1997; 225.
- 19. Gupta AK. Clinical Ophthalmology: Contemporary Perspectives, India: Elsevier. 2012;77.
- 20. Thomas Gareth, Medicinal Chemistry: An Introduction, England:John Wiley & Sons. 2007;2nd edition, 288.
- 21. Frishman William H, Cheng-Lai Angela and Nawarskas James. Current Cardiovascular Drugs, Springer Science & Business Media. 2005;3rd edition, 77.
- 22. Kadam SS, Mahadik KR and Bothara KG. Principles of Medicinal chemistry Vol. - II, Pune, Nirali Prakashan. 2008;120.
- 23. Broadley Kenneth J. Autonomic Pharmacology, London:CRC Press. 2017;5.5.3.
- 24. Hideya Saitō and Masaru Minami. Antihypertensive Drugs Today Volume 2 of Progress in hypertension. Netherlands:VSP. 1992;97.
- 25. Pharmaceutical Manufacturing Encyclopedia, 3rd Edition New York: William Andrew Publishing, 2013, 3rd edition, 3485.