INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Available online at www.ijrpc.com

Research Article

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY METHOD FOR SIMULTANEOUS QUANTIFICATION OF OLEANOLIC ACID, LUPEOL AND B-SITOSTEROL FROM NYCTANTHES ARBOR-TRISTIS AND ITS MARKETED FORMULATION

Vikas V. Vaidya, Pushkar M. Pradhan* and Manjiri A. Shinde
Department of Chemistry, Ramnarain Ruia College,
Matunga, Mumbai-19, Maharashtra, India.

ABSTRACT

In the present work a simple, precise, accurate and reproducible RP-HPLC method is developed and validated for quantification of three pharmacologically active compounds simultaneously. Oleanolic acid, Lupeol and β -sitosterol in the methanolic leaf extract of *Nyctanthes arbor-tristis* and from its marketed formulation. These compounds were extracted from the Nyctanthes arbor-tristis leaves and from its formulation using Soxhlet extraction followed by chromatographic separation using reverse phased high performance liquid chromatography. The method was developed using COSMOSIL C18 – MS - II packed column with dimensions 5 μ * 4.6 id * 150 mm using mobile phase as 0.1% Formic acid in Acetonitrile: Isopropanol (93:7) which gave good resolution for all the components with retention time of 5.247 min, 18.156 min and 28.905 min for Oleanolic acid, Lupeol and β-sitosterol respectively. The total run time for the programme was 35 min. The chromatograms were recorded at 206 nm using PDA detector. The quantity of Oleanolic acid, Lupeol and β-sitosterol in leaves of Nyctanthes arbor-tristis was found to be 0.1066 %, 0.03144 % and 0.07857 % respectively, while in the formulation it was found to be 0.0080812 %, 0.0030619 % and 0.0083626 % respectively. Oleanolic acid was found to be linear between 20 – 140 $\mu g/mL$, Lupeol was linear between 1 – 50 μ g/mL range & B-sitosterol was found to be 10 - 120 μ g/mL. The method showed recovery within the acceptable range for all the three standards. Recovery for Oleanolic acid, Lupeol and β -sitosterol was found to be 96.12 %, 101.78 % and 107.34 % respectively in the plant, whereas in the case of formulation it was found to be 99.24%, 106.93 % and 103.56 % respectively. The RSD for precision and reproducibility calculated were below 2%. This method can be used as a quality control tool for standardization of plant material and formulation containing its extract.

Keywords: *Nyctanthes arbor-tristis*, High performance liquid chromatography, β-sitosterol.

INTRODUCTION

Nyctanthes arbor-tristis belongs to the family Oleaceae and is known as Paarijat in Sanskrit and as Night flowering jasmine in English.
Nyctanthes arbor-tristis Linn is native to India, distributed widely in sub-Himalayan regions and southwards to the Godavari. Different parts of Nyctanthes arbor-tristis Linn are known to possess various ailments by tribal people of the Indian subcontinent with its use in Ayurveda, Sidha and Unani systems of medicines. The leaves of Nyctanthes arbor-

tristis Linn are used extensively in Ayurvedic medicine for the treatment of various diseases such as sciatica, chronic fever, rheumatism, and internal worm infections and as a laxative, diaphoretic and diuretic.⁸

A variety of constituents belonging to different chemical classes such as terpenes, steroids, glycosides, flavonoids, alkaloids and aliphatic compounds have been isolated and characterized from different parts of *Nyctanthes arbor-tristis*. The bark contains a glycoside and two alkaloids, one soluble in

water and the other soluble in chloroform.³ Its roots are composed of alkaloids, tannins and glucosides.⁴ The chemicals constituents present in Leaves of *Nyctanthes arbor-tristis* are D-mannitol, β-sitosterol, flavanol glycosides, Astragaline, Nicotiflorin, Oleanolic acid, Nyctanthic acid, tannic acid, ascorbic acid, methylsalicylate, carotene, Oleanolic acid, lupeol, mannitol, Glucose and fructose, iridoid glycoside, benzoic acid.⁹ Bark contains glycosides and alkaloids.¹

Nyctanthes arbor-tristis plant parts possess various biological activities such as Antioxidant activity, Anti-inflammatory, Immunostimulant, Anti-microbial, Anti-viral, Anti-plasmodial, Hepatoprotective, Anti-allergy

Many forms of raw plant material and herbal drugs derived from *Nyctanthes arbor-tristis* are distributed in the herbal market; however, the content of bioactive components in these products has not necessarily been quality-controlled. Therefore, a simple, low-cost, and rapid method for screening and quantitating bioactive components is strongly desired. Literature survey revealed that no RP-HPLC method has been reported for simultaneous quantitation of Oleanolic acid, Lupeol and β -sitosterol from the methanolic extract of leaves of *Nyctanthes arbor-tristis* using High Performance Liquid Chromatography.

MATERIALS AND METHODS Collection of Plant

Leaves of *Nyctanthes arbor-tristis* were collected from Kanakeshwar, around 10 km away from Alibaug, Maharashtra, India in the month of June. The plant was authenticated and voucher specimen no. PMP-1 was deposited in The Botanical Survey of India, Pune, India.

PREPARATION OF PLANT MATERIAL

The leaves were washed thoroughly with tap water. The leaves were dried initially using paper to remove excess of water and later were air dried thoroughly under shade at room temperature to avoid direct loss of phytoconstituents from sunlight. The shade dried material was powdered using a grinder and sieved through an ASTM 80 mesh. It was then homogenized to a consistency of a fine powder and stored in an air-tight container for further analysis.

Preparation of the Extracts

Nyctanthes arbor-tristis leaf powder was extracted using Soxhlet extraction. One grams of plant powder was weighed and packed in a Whatman paper thimble. This weighed powder sample was damped with 5 mL of concentrated HCl. It was then extracted with 200 mL methanol for 12 hours using Soxhlet extractor. The solvent after extraction was evaporated to reduce its volume. The final volume was made to 10 mL using methanol. Formulation extract was prepared in similar manner with five grams as sample size.

Reagents and standards

All chemicals and solvents used were of analytical grade and purchased from Merck (Darmstadt, Germany). Analytical standards Oleanolic acid, Lupeol and β -sitosterol were procured from Sigma-Aldrich (Bengaluru, India).

Preparation of standard solutions

Stock solutions of standards were prepared in methanol just before use. 5 mg each of Oleanolic acid, Lupeol and β -sitosterol was dissolved in 5 mL of methanol to make a concentration of 1000 μ g/1000 μ L. All three standards were further diluted using methanol to make a solution of appropriate concentrations.

CHROMATOGRAPHIC CONDITIONS Table 1.Optimized Chromatographic Conditions

Parameter	Description			
Instrument	Shimadzu UFLC Prominence System			
Pump	LC – 20 AD binary pumps			
Injector	Autosampler (SIL – 20 AC HT)			
Injection volume	10 μΙ			
Column oven	CTO – 20 AC at 25°C			
Column	COSMOSIL C18 – MS - II packed column (5 µ * 4.6 id * 150 mm)			
Mobile Phase	Isocratic system of 0.1% Formic acid in Acetonitrile: Isopropanol (93:7)			
Flow Rate	1.0 mL/min			
Detector	UV Detector- UV-4075			
Detection Wavelength	206 nm			

ISSN: 2231-2781

METHOD VALIDATION

The objective of validation of an analytical procedure is to demonstrate that it is suitable for its intended purpose. Results from method validation can be used to judge the quality, reliability and consistency of analytical results; it is an integral part of any good analytical practice.

System Suitability and Specificity

Suitability of the system was checked by injecting six replicates of 10 µl/mL solutions of each standard. The solution was injected under the optimized conditions. Parameters like retention time and peak area were evaluated for the system suitability. Specificity test was carried out by injecting 10 µl of the diluent, mobile phase and individual standards.

Precision

The variability of the method was studied by carrying out repeatability, inter-day and intraday precision. Repeatability was carried out in same laboratory, on same day as well as on two consecutive days, by analyzing standard solutions of Oleanolic acid, Lupeol and β -sitosterol using optimized chromatographic conditions.

Linearity

The Linearity of a method is the measure of how well a calibration plot of detector response against concentration approximates to a straight line. Concentrations of Oleanolic acid were 20 μ g/mL, 40 μ g/mL, 60 μ g/mL, 80 μg/mL, 100 μg/mL, 120 μg/mL and 140 μg/mL were selected for linear dynamic range experiment. For Lupeol 1 µg/mL, 5 µg/mL, 10 $\mu g/mL$, 20 $\mu g/mL$, 30 $\mu g/mL$, 40 $\mu g/mL$ and 50 µg/mL were selected and for β-sitosterol, concentrations of 10 µg/mL, 20 µg/mL, 40 $\mu g/mL$, 60 $\mu g/mL$, 80 $\mu g/mL$, 100 $\mu g/mL$ and 120 µg/mL were selected for linear dynamic range experiment. The chromatograms were recorded and the peak areas of Oleanolic acid, Lupeol and β-sitosterol for each applied concentration of these standards were noted. The response factors were calculated for each concentration of Oleanolic acid, Lupeol and B-

sitosterol by dividing each peak area by concentration of Oleanolic acid, Lupeol and β -sitosterol at that level.

Limit of Detection and Limit of Quantification

ICH defines the limit of detection (LOD) is the lowest concentration of an analyte that can be detected under the operational conditions of the method but not necessarily quantitated as an exact value. The limit of quantification (LOQ) is defined as the lowest concentration of an analyte in a sample that can be determined with acceptable precision and accuracy, under the operational conditions of the method.

Assay

Ten microliters of sample solution i.e. Nyctanthes arbor-tristis leaf extract and of formulation extract were injected. Also different concentrations of Oleanolic acid, Lupeol and β-sitosterol were injected under optimized chromatographic conditions. The corresponding to Oleanolic acid, Lupeol and βsitosterol in the sample solution was identified by comparing the Retention time values of the sample, with that of standards. The amount of Oleanolic acid. Lupeol and \(\beta\)-sitosterol present in sample solution was determined from the calibration curve by using the peak area of standards generated by the chromatogram.

Recovery

The recovery experiment was carried out to check if there is any interference of other constituents with the peaks of Oleanolic acid, Lupeol and β-sitosterol present in leaves of Nyctanthes arbor-tristis and formulation Arthrum Capsule containing extract of Nyctanthes arbor-tristis. Accuracy of the method was established by carrying out recovery experiment at three different levels, using standard addition method. Each sample was analyzed in triplicates and the amounts of Oleanolic acid, Lupeol and **β-sitosterol** recovered for each level, were determined. The value of percentage recovery for the three components was then calculated.

Ruggedness

Ruggedness of the method was checked under following conditions

Parameters	Optimized conditions	Experimental conditions
Oven temperature (° C)	25 °C	± 5
Flow rate (mL/min)	1.00 mL/min	± 0.2
Mobile phase composition	0.1 % Formic acid in acetonitrile : Isopropanol (93 : 7) Isocratic	± 2%

Stability Studies

The stability of stock solutions for all three standards were studied by storing them at room temperature and under refrigeration between 0 - 4° C. Triplicate injections of the standard solutions were done at regular intervals of 12 hours.

RESULTS AND DISCUSSION

A reversed phase high performance liquid chromatographic (HPLC) method for the

simultaneous quantification of Oleanolic acid, Lupeol and β -sitosterol from *Nyctanthes arbortristis* leaves methanolic extract and from a formulation containing extract of *Nyctanthes arbor-tristis* was developed and validated in the present research work.

Retention time values of Oleanolic acid, Lupeol and β -sitosterol was found to be 5.247 min, 18.156 min and 28.905 min respectively.

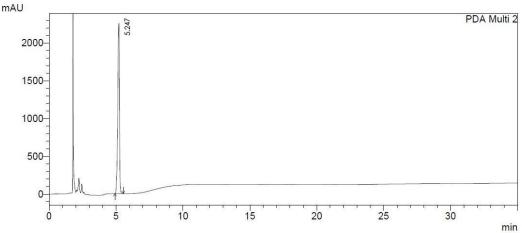


Fig. 1: HPLC Chromatogram of Standard Oleanolic acid

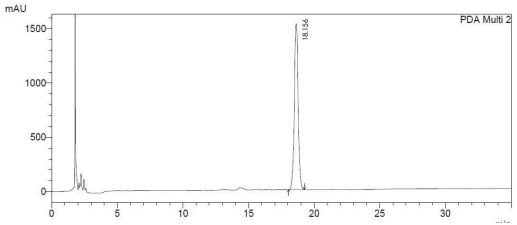


Fig. 2: HPLC Chromatogram of Standard Lupeol

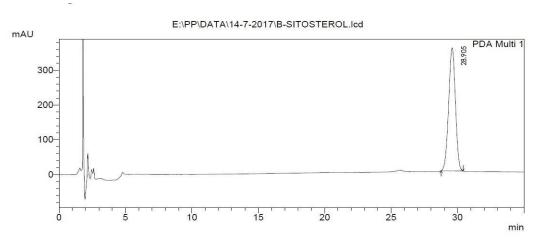


Fig. 3: HPLC Chromatogram of Standard β-sitosterol

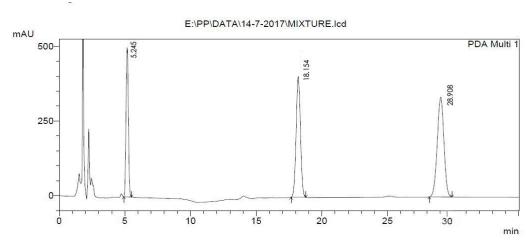


Fig. 4: HPLC Chromatogram of Standard Mixture of Oleanolic acid, Lupeol and β-sitosterol

The method was validated for specificity, linearity, LOD, LOQ, intra- day and inter-day precision, recovery, ruggedness and stock solution stability. The method was found to be linear between 20 - 140 $\mu g/mL$ for Oleanolic acid, Lupeol was linear between 1 - 50 $\mu g/mL$ range & B-sitosterol was found to be linear between 10 - 120 $\mu g/mL$. The limits of detection (LOD) for Oleanolic acid, Lupeol and β -sitosterol was found to be 6.667 $\mu g/mL$, 0.333 $\mu g/mL$ and 3.33 $\mu g/mL$ respectively and the limit of quantification (LOQ) was found to be 20 $\mu g/mL$, 1 $\mu g/mL$ and 10 $\mu g/mL$ respectively.

The relative standard deviation for inter-day and intra-day precision was <2%. The correlation coefficient was found to be \geq 0.99 for the components under evaluation. The precision (% RSD) of the method was found to be < 2%, indicating that the proposed method is precise.

The recovery values for all the standards were within acceptable limits. Stock solution stability

was checked by monitoring the peak area response over a given time range. Standard solutions were analyzed right after its preparation and at regular intervals till 72 hrs. There was no significant change (% RSD \leq 2%) in the retention time and area values of standard peak.

The quantity of Oleanolic acid, Lupeol and β -sitosterol in leaves of *Nyctanthes arbor-tristis* was found to be 0.1066 %, 0.03144% and 0.07857 % respectively. While the quantity of Oleanolic acid, Lupeol and β -sitosterol in formulation was found to be 0.0080812%, 0.0030619 % and 0.0083626 % respectively. The method is specific for all the three components because it resolved all the standards well in the presence of other phytochemicals in *Nyctanthes arbor-tristis*. The method was found to be suitable for qualitative and simultaneous quantitative analysis of Oleanolic acid, Lupeol and β -sitosterol in the methanolic extract of *Nyctanthes arbor-tristis*.

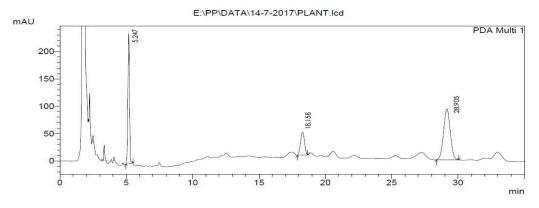


Fig. 5: HPLC Chromatogram of Nyctanthes arbor-tristis methanolic leaf extract

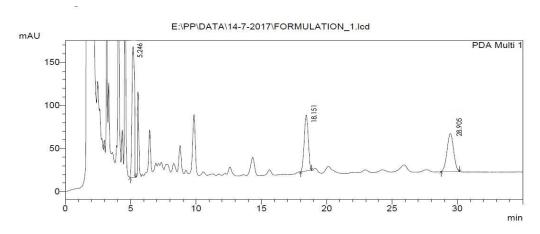


Fig. 6: HPLC Chromatogram of Formulation containing Nyctanthes arbor-tristis plant extract

Proposed method was not influenced by the factors considered for ruggedness study. Change in flow rate, temperature and mobile phase composition affected the retention time of the three analytes but the results were satisfactory since % CV was <2%.

Stock solution stability study of all the three standards stored for the period of 72 hours at

0-4°C showed % CV < 2%. During bench top stability study, the results vastly varied indicating lesser stability of the standards at room temperature. Stability studies showed that Oleanolic acod, Lupeol and β - sitosterol were found stable for at least 12.0 h at room temperature and more than 72 hours at 0-4°C of storage condition.

Table 2: Summary of method validation parameters

Parameter	Oleanolic acid	Lupeol	β-sitosterol
Specificity	Specific	Specific	Specific
Precision	<2%	< 2%	<2%
LOD	6.667 (µg/mL)	0.333 (μg/mL)	3.333 (µg/mL)
LOQ	20 (μg/mL)	1 (μg/mL)	10 (μg/mL)
Linearity (µg/mL)	20-140	1-50	10-120
Quantity (Plant)	0.1066 %	0.03144 %	0.07857 %
Quantity (formulation)	0.0080812 %	0.0030619 %	0.0083626 %
Stock solution stability	Stable more than 72 hrs at 0 – 4 °C	Stable more than 72 hrs at 0 – 4 °C	Stable more than 72 hrs at 0 – 4 °C
Recovery (Plant)	96.12%	101.78%	107.34%
Recovery (Formulation)	99.24%	106.93 %	103.56 %

CONCLUSION

The developed method in this research work is precise, accurate and reproducible. It is suitable for qualitative and quantitative analysis of Oleanolic acid, Lupeol and βsitosterol in the methanolic extracts of leaves of Nyctanthes arbor-tristis. Also it can be used as a quality control method for other market formulations or dietary supplements containing powder extract of Nyctanthes arbor-tristis.

CONFLICT OF INTEREST

The authors whose names are listed certify that they have NO affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest professional personal (such or as relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

REFERENCES

- 1. Champa Rani, Sunaina Chawla, Manisha, Ak Mangal, Subhash Kajla and AK Dhavan. Nyctanthes Arbour-Trisitis (Night Jasmine): A Sacred Ornamental Plant With Immense Medicinal Potentials, Indian Journal Of Traditional Knowledge. 2012;11(3):427-
- Jadhav Santosh and Patil Manojkuma. 2. A Review On: Nyctanthes Arbortristis Linn. Rejuvinating Herbs. International Journal Of Research In Pharmacy and Pharmaceutical Sciences. 2016:1 (1):54-62.
- Ansari Imtiyaz Ahmed, Patil Javesh K, Kamora Kunal Rajeshlal, Mandhan Priyanka Mahesh, Poptani Taruna Hareshlal and Girase Ananda Narayan. Anthelmintic Activity Of Nyctanthes

- Arbortristis Leaves On Indian Earth Worms. Indian Journal Of Drugs. 2016;4(2):63-68.
- Bansal Gulshan Suri Ka and Grover Parul. Comprehensive Review On Nyctanthes Arbortristis. International Journal Drug Development & Research. 2015:7(1):183-193.
- Validation of Analytical Procedures.Text And Methodology Q2 (R1); Ich Harmonised Tripartite Guidelines
- Martelanc. Mitja, Vovk. Irena. Simonovska and Breda. Separation and Identification Of Some Common Isomeric Plant Triterpenoids By Thin-Layer Chromatography And High-Performance Liquid Chromatography. of Chromatography. Journal 2009;1216:6662-70. 10.1016/J.Chroma.2009.07.038.
- Bansode Vijaykumar , Jadhavsantosh and Sawalejyotiram. Review On: Indian Medicinal Plants Having Anti-Arthritic Property. Indo American Journal of Pharmaceutical Research. 2016:6 (04):5130-5111.
- Tuntiwachwuttiku P. Ravanil K and Taylor WC. Chemical Constituents From The Flowers Of Nyctanthes Arbortristis. Science Asia, 2003:29:21-30.
- Poojashree Verma, Sumeet Dwivedi, Kushagra Dubey and Hemant Joshi. Investigation Of Invitro Anthelmintic Activity Of Fresh Juice, Aqueous And Hydro-Alcoholic Extracts Of Leaves of Nyctanthes Arbor-Tristis Linn. Nutracos. 2011;54-56.
- 10. Patil St. Ahirrao Ra and Pawar Sp. A Short Review on Method Validation. Sper J Anal Drug Regul Aff. 2016;1(1):6-13.