INTRODUCTION
According to WHO, it is estimated that 3% of the world's population have diabetes and the prevalence is expected to double by the year 2025 to 6.3% (M. Abdalla et al., 2012). Diabetes mellitus is a metabolic disorder with increasing incidence throughout the world. Management of diabetes without side effects is still a challenge to the medical community. There comes the importance of Natural remedies. The genus Anaphyllum from Araceae family comprises of two species like; Anaphyllum beddomei Engl. and Anaphyllum wightii Schott. Tribal communities and villagers of various parts of Kerala use these plants as antidote to snake bite (V. J. Dominic, 2010).

MATERIALS AND METHODS
Plant material
The Fresh rhizomes of Anaphyllum wightii Schott were collected from the Ghatt section of Sakleshpur, Karnataka. The plant material was identified and a voucher specimen was deposited in the Department of Pharmacognosy of Academy of Pharmaceutical Sciences, Pariyaram, Kerala.

Extraction of rhizome
The shade dried rhizomes were powdered mechanically and sieved through sieve no 20 and stored in an air tight container. The extraction was carried out by hot percolation method using Soxhlet apparatus. The solvent used was methanol. About 100 gm of powder was extracted with 500 ml of methanol. The extract was concentrated to dryness under controlled temperature 45-55°C. The percentage yield was found to be 12.50%. The extract was preserved in refrigerator till further use.

In vitro methods employed in anti-diabetic studies (Hamdan II et al., 2004)
Inhibition of alpha amylase enzyme
A total of 500 μl of test samples and standard drug (100-1000 μg/ml) were added to 500 μl of 0.20 mM phosphate buffer (pH 6.9) containing α-amylase (0.5mg/ml) solution and were incubated at 25°C for 10 min. After these, 500 μl of a 1% starch solution in 0.02 M sodium phosphate buffer (pH 6.9) was added to each tube. The reaction mixtures were then incubated at 25°C for 10 min. The reaction was stopped with 1.0 ml of 3, 5 dinitrosalicylic acid. The absorbance was taken at 540 nm using Eppendorf 1101 spectrophotometer. The percentage inhibition was calculated using the formula:

\[
\text{Inhibition} = 100 - \left(\frac{A_{control} - A_{sample}}{A_{control}} \right) \times 100
\]

Where, A_{control} is the absorbance of the control tube and A_{sample} is the absorbance of the sample tube.

Keywords: Anti-diabetic activity, in vitro, Anaphyllum wightii, alpha amylase, alpha glucosidases
acid colour reagent. The test tubes were then incubated in a boiling water bath for 5 min, cooled to room temperature. The reaction mixture was then diluted after adding 10 ml distilled water and absorbance was measured at 540 nm. Control represent 100% enzyme activity and were conducted in similar way by replacing extract with vehicle (N.R.Thalapaneni et.al.,2008).

Inhibition of alpha glucosidases enzyme

The inhibitory activity was determined by incubating a solution of starch substrate (2 % w/v maltose or sucrose) 1ml with 0.2 M Tris buffer pH 8.0 and various concentration of plant extract for 5 min at 37°C. The reaction was initiated by adding 1ml of α-glucosidase enzyme (1U/ml) to it followed by incubation for 10 min at 37°C. Then, the reaction mixture was heated for 2 min in boiling water bath to stop the reaction. The amount of liberated glucose is measured by glucose oxidase peroxidase method (N.W.Tietz et.al.,1999).

Calculation of 50% Inhibitory Concentration (IC50)

The concentration of the plant extracts required to scavenge 50% of the radicals (IC50) was calculated by using the percentage scavenging activities at five different concentrations of the extract. Percentage inhibition (I %) was calculated by:

\[I \% = \frac{(Ac-As)}{Ac} \times 100 \]

* Ac is the absorbance of the control.
* As is the absorbance of the sample.

RESULTS

Evaluation of in vitro α-amylase inhibitory activity using Anaphyllum wightii rhizome extract

There was a dose-dependent increase in percentage inhibitory activity against α-amylase enzyme. At a concentration 100μg/ml of extract showed a percentage inhibition 33.52 ± 0.2664 and for 1000 μg/ml it was 81.70 ± 0.6171. The extract gave an IC50 value of 762.11 ± 2.67μg/ml. (Table 1).

Table 1: α-amylase inhibition by Anaphyllum wightii methanol extract

<table>
<thead>
<tr>
<th>S. No</th>
<th>Concentration Micro grams/ml</th>
<th>Percentage Inhibition</th>
<th>IC50 Micro grams/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>33.52 ± 0.2664</td>
<td>762.11 ± 2.67</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>46.77 ± 0.1620</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>51.76 ± 0.2861</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>64.37 ± 0.7815</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
<td>81.70 ± 0.6171</td>
<td></td>
</tr>
</tbody>
</table>

All determinations were carried out in triplicate manner and values are expressed as the mean ± SEM. The IC50 value is defined as the concentration of inhibitor to inhibit 50% of its activity under the assayed conditions.

Evaluation of in vitro α-glucosidase inhibitory activity using Anaphyllum wightii rhizome extract

The methanolic extract of the rhizomes revealed a significant inhibitory action on α-glucosidase enzyme. The percentage inhibition at 100-1000 μg/ml concentrations of the extract showed a concentration dependent increase in percentage inhibition. The percentage inhibition varied from 80.10 ± 0.5350 to 30.44 ± 0.7674 for highest concentration to the lowest concentration of 100 μg/ml. The concentration required for 50% inhibition (IC50) was found to be 608.51 ± 3.25 μg/ml. (Table 2).

Table 2: α-glucosidase inhibition by Anaphyllum wightii methanol extract

<table>
<thead>
<tr>
<th>S. No</th>
<th>Concentration Micro grams/ml</th>
<th>Percentage Inhibition</th>
<th>IC50 Micro grams/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>30.44 ± 0.7674</td>
<td>608.51 ± 3.25</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>41.50 ± 0.3455</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>50.24 ± 0.2570</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>61.77 ± 0.8237</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
<td>80.10 ± 0.5350</td>
<td></td>
</tr>
</tbody>
</table>

All determinations were carried out in triplicate manner and values are expressed as the mean ± SEM. The IC50 value is defined as the concentration of inhibitor to inhibit 50% of its activity under the assayed conditions.

DISCUSSIONS

Insulin is a key player in the control of glucose homeostasis. Lack of insulin affects carbohydrate, fat and protein metabolism (Rajiv Gandhi et.al.,2012). The intestinal enzymes like α-amylase and α-glucosidase are found to be very important in carbohydrate digestion and glucose absorption. The suppression of the activity of such digestive enzymes would delay the degradation of
starch and oligo saccharides, which would in turn cause a decrease in the absorption of glucose and consequently the reduction of postprandial blood glucose level elevation (S.N.Davis et al., 2001). Alpha glucosidase inhibitor retards the digestion of carbohydrates and slows down the absorption. The therapeutic approaches for reducing postprandial blood glucose levels in patient with diabetes mellitus is to prevent absorption of carbohydrate after food intake. Inhibition α-amylase and α-glucosidases reduced the high postprandial blood glucose peaks in diabetes (F.Conforti et al., 2005)

CONCLUSION
The present finding reveals that methanolic extract of the rhizomes of Anaphyllum wightii efficiently inhibits both alpha amylase and alpha glucosidase enzymes in vitro in a dose dependent manner. The antidiabetic action of Anaphyllum wightii can also be attributed to the intestinal alpha amylase and alpha glucosidase inhibitory activity. In this present study we evaluated invitro alpha amylase and alpha glucosidase activity of crude methanol extract of the rhizomes of Anaphyllum wightii. The plant showed significant inhibition activity, so far the compound isolation, purification and characterization which is responsible for inhibiting activity, has to be done for the usage of an antidiabetic agent.

REFERENCES